-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsec1.3.1-2.clj
135 lines (107 loc) · 2.93 KB
/
sec1.3.1-2.clj
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
;; Ex. 1.29
(defn sum [term a nxt b]
(if (> a b)
0
(+ (term a)
(sum term (nxt a) nxt b))))
(defn integral [f a b dx]
(* (sum f
(+ a (/ dx 2))
(fn [x] (+ x dx))
b)
dx))
(defn simpson-integral [f a b n]
(assert (even? n))
(let [h (/ (- b a) n)]
(* (/ h 3)
(sum (fn [k]
(* (cond
(or (zero? k) (= n k)) 1
(even? k) 2
:else 4)
(f (+ a (* k h)))))
0
inc
n))))
; The Simpson's rule-integration gives more accurate results for the same
; amount of iterations:
; (integral cube 0.0 1.0 0.01) => 0.24998750000000042
; (simpson-integral cube 0.0 1.0 100) => 0.24999999999999992
; and
; (integral cube 0.0 1.0 0.001) => 0.249999875000001
; (simpson-integral cube 0.0 1.0 1000) => 0.2500000000000003
;; Ex. 1.30
(defn sum [term a nxt b]
(loop [a a res 0]
(if (> a b)
res
(recur (nxt a) (+ res (term a))))))
;; Ex. 1.31
;; a. (recursive process)
(defn product [term a nxt b]
(if (> a b)
1
(* (term a)
(product term (nxt a) nxt b))))
(defn factorial [n]
(product identity 1 inc n))
; Warning: uses ratios, which are slow
(defn approximate-pi [steps]
(float
(* (product (fn [k]
(/ (if (even? k)
(+ k 2)
(+ k 1))
(if (even? k)
(+ k 1)
(+ k 2))))
1
inc
steps)
4)))
;; b. (iterative process)
(defn product [term a nxt b]
(loop [a a res 1]
(if (> a b)
res
(recur (nxt a) (* res (term a))))))
;; Ex. 1.32
;; a. (recursive process)
(defn accumulate [combiner null-value term a nxt b]
(if (> a b)
null-value
(combiner (term a)
(accumulate combiner null-value term (nxt a) nxt b))))
(defn sum [term a nxt b]
(accumulate + 0 term a nxt b))
(defn product [term a nxt b]
(accumulate * 1 term a nxt b))
;; b. (iterative process)
(defn accumulate [combiner null-value term a nxt b]
(loop [a a res null-value]
(if (> a b)
res
(recur (nxt a) (combiner res (term a))))))
;; Ex. 1.33
(defn filtered-accumulate [combiner null-value term a nxt b filt]
(loop [a a res null-value]
(if (> a b)
res
(recur (nxt a)
(combiner res
(if (filt a)
(term a)
null-value))))))
(defn sum-of-squares-of-primes [a b]
(filtered-accumulate + 0 square a inc b prime?))
(defn product-of-relative-primes [n]
(filtered-accumulate *
1
identity
1
inc
(dec n)
(fn [k] (= (gcd k n) 1))))
;; Ex. 1.34
; (f f) reduces to (2 2). This, of course, is an error since 2 is not a
; function.