-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathfingertrees.sls
689 lines (616 loc) · 22.1 KB
/
fingertrees.sls
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
#!r6rs
;;; fingertrees.sls --- A Simple General-Purpose Data Structure
;; Copyright (C) 2012 Ian Price <[email protected]>
;; Author: Ian Price <[email protected]>
;; This program is free software, you can redistribute it and/or
;; modify it under the terms of the new-style BSD license.
;; You should have received a copy of the BSD license along with this
;; program. If not, see <http://www.debian.org/misc/bsd.license>.
;;; Commentary:
;;
;; Fingertrees are a generalised form of deque, that you can parameterise
;; to compute a value, called the "measure" of a fingertree. This measure
;; will be updated incrementally as you add and remove elements from the
;; fingertree. Among other things, this allows fingertrees to be used
;; where you otherwise might have written a custom data structure.
;;
;; To compute the measure, fingertrees require pieces of information: a
;; converter, a combiner, and an identity.
;;
;; The converter is a procedure of one argument, that maps values in the
;; fingertree to other values which are used for computing the measure.
;;
;; The combiner is a procedure of two arguments, and combines these into
;; one value representing them both. A combiner must be associative
;; i.e. (combine A (combine B C)) must be equivalent to (combine (combine
;; A B) C) for all values A, B and C.
;;
;; An identity is a value that represents the measure of an empty
;; fingertree. It must obey the rule that (combine X identity), (combine
;; identity X) and X are always the same.
;;
;; To make things more concrete, a simple use of a fingertree is as a
;; deque that keeps a running total. In this case, the converter can
;; simply be the function (lambda (x) x) if it is a deque of integers,
;; the combiner would be +, and the identity 0.
;;
;; (define l '(3 1 4 1 5 9))
;;
;; (define ft (list->fingertree l 0 + (lambda (x) x)))
;;
;; (fingertree-measure ft)
;; ; => 23
;; (fingertree-measure (fingertree-snoc ft 2))
;; ; => 25
;; (let-values (((head tail) (fingertree-uncons ft)))
;; (fingertree-measure tail))
;; ; => 20
;;
;; Mathematically speaking, the _return type_ of the converter, the
;; combiner and the identity element are expected to form a
;; monoid.
;;
;; Below, I use the slightly incorrect terminology of referring to the
;; combiner, the converter, and the identity, together as a
;; monoid. Mathematicians, please forgive me. Programmers please forgive
;; me even more. If you can provide a better name (from a programmers,
;; not a mathematicians, point of view) that works in most circumstances,
;; I will be happy to use it.
;;
;; (FWIW the Haskell Data.Fingertree package uses odd name of Measured
;; (which are expected to be instances of Monoid))
;;
;; fingertree? : any -> bool
;; returns #t if argument is a fingertree, #f otherwise.
;;
;; fingertree-empty? : fingertree -> bool
;; returns #t if there are no items in the fingertree, #f otherwise.
;;
;; make-fingertree : id combine measure -> fingertree
;; returns a new fingertree, parameterised by the given monoid.
;;
;; fingertree-cons : any fingertree -> fingertree
;; returns the new fingertree created by adding the element to the front
;; of the argument fingertree.
;;
;; fingertree-snoc : fingertree any -> fingertree
;; returns the new fingertree created by adding the element to the end of
;; the fingertree.
;;
;; fingertree-uncons : fingertree -> any + fingertree
;; returns two values: the element at the front of the fingertree, and a
;; new fingertree containing all but the front element. If the fingertree
;; is empty, a &fingertree-empty condition is raised.
;;
;; fingertree-unsnoc : fingertree -> fingertree + any
;; returns two values: a new fingertree containing all but the rear
;; element of the argument fingertree, and the rear element itself. If
;; the fingertree is empty, a &fingertree-empty-condition is raised.
;;
;; fingertree-append : fingertree fingertree -> fingertree
;; returns a new fingertree which contains all of the elements of the
;; first fingertree argument, followed by all the elements of the
;; second. The argument fingertrees are assumed to be parameterised by
;; the same monoid.
;;
;; list->fingertree : (list->fingertree l id append convert)
;; returns a fingertree containing all of the elements of the argument
;; list, in the same order.
;;
;; fingertree->list : fingertree -> Listof(Any)
;; returns a list of all the elements in the fingertree, in the order
;; they would be unconsed.
;;
;; fingertree-measure : fingertree -> any
;; returns the measure of the fingertree, as defined by the fingertree's
;; monoid.
;;
;; fingertree-split : (any -> bool) fingertree -> fingertree + fingertree
;; returns two values: the first is the largest prefix of the fingertree for
;; which applying the predicate to it's accumulated measure returns
;; #f. The second values is a fingertree containing all those elements
;; not in the first fingertree.
;;
;; fingertree-split3: (any -> bool) fingertree -> fingertree + value + fingertree
;; similar to fingertree-split, however, instead of returning the
;; remainder as the second argument, it returns the head of the remainder
;; as the second argument, and tail of the remainder as the third
;; argument.
;; TODO: what error should I give if the remainder was empty?
;;
;; fingertree-fold : (any -> any -> any) any fingertree
;; returns the value obtained by iterating the combiner procedure over
;; the fingertree in left-to-right order. This procedure takes two
;; arguments, the current value from the fingertree, and an accumulator,
;; and it's return value is used as the accumulator for the next
;; iteration. The initial value for the accumulator is given by the base
;; argument.
;;
;; fingertree-fold-right : (any -> any -> any) any fingertree
;; similar to fingertree-fold, but iterates in right-to-left order.
;;
;; fingertree-reverse : fingertree -> fingertree
;; returns a new fingertree in which the elements are in the opposite
;; order from the argument fingertree.
;;
;; fingertree-empty-condition? : condition -> bool
;; returns #t if the argument is a &fingertree-empty condition, #f otherwise.
;;
(library (pfds fingertrees)
(export fingertree?
fingertree-empty?
make-fingertree
fingertree-cons
fingertree-snoc
fingertree-uncons
fingertree-unsnoc
fingertree-append
list->fingertree
fingertree->list
fingertree-measure
fingertree-split
fingertree-split3
fingertree-fold
fingertree-fold-right
fingertree-reverse
fingertree-empty-condition?
)
(import (rnrs))
;;; List helpers
(define (snoc l val)
(append l (list val)))
(define (take l n)
(if (or (null? l) (zero? n))
'()
(cons (car l)
(take (cdr l) (- n 1)))))
(define (last list)
(if (null? (cdr list))
(car list)
(last (cdr list))))
(define (but-last list)
(if (null? (cdr list))
'()
(cons (car list)
(but-last (cdr list)))))
(define (map-reverse f l)
(fold-left (lambda (o n) (cons (f n) o)) '() l))
;;; Node type
(define-record-type node2
(protocol
(lambda (new)
(lambda (monoid a b)
(define app (mappend monoid))
(new (app (measure-nodetree a monoid)
(measure-nodetree b monoid))
a
b))))
(fields measure a b))
(define-record-type node3
(protocol
(lambda (new)
(lambda (monoid a b c)
(define app (mappend monoid))
(new (app (app (measure-nodetree a monoid)
(measure-nodetree b monoid))
(measure-nodetree c monoid))
a
b
c))))
(fields measure a b c))
(define (node-case node k2 k3)
(if (node2? node)
(k2 (node2-a node) (node2-b node))
(k3 (node3-a node) (node3-b node) (node3-c node))))
(define (node-fold-right f base node)
(node-case node
(lambda (a b)
(f a (f b base)))
(lambda (a b c)
(f a (f b (f c base))))))
(define (node->list node)
(node-fold-right cons '() node))
(define (nodetree-fold-right f base nodetree)
(define (foldr node base)
(cond ((node2? node)
(foldr (node2-a node)
(foldr (node2-b node) base)))
((node3? node)
(foldr (node3-a node)
(foldr (node3-b node)
(foldr (node3-c node) base))))
(else (f node base))))
(foldr nodetree base))
(define (nodetree-fold-left f base nodetree)
(define (foldl node base)
(cond ((node2? node)
(foldl (node2-b node)
(foldl (node2-a node) base)))
((node3? node)
(foldl (node3-c node)
(foldl (node3-b node)
(foldl (node3-a node) base))))
(else (f node base))))
(foldl nodetree base))
;;; Tree type
(define-record-type empty)
(define-record-type single
(fields value))
(define-record-type rib
(protocol
(lambda (new)
(lambda (monoid left middle right)
(define app (mappend monoid))
(new (app (app (measure-digit left monoid)
(measure-ftree middle monoid))
(measure-digit right monoid))
left
middle
right)
)))
;; left and right expected to be lists of length 0 < l < 5
(fields measure left middle right))
(define (ftree-case ftree empty-k single-k rib-k)
(cond ((empty? ftree) (empty-k))
((single? ftree)
(single-k (single-value ftree)))
(else
(rib-k (rib-left ftree)
(rib-middle ftree)
(rib-right ftree)))))
(define (digits-fold-right f b d)
(fold-right (lambda (ntree base)
(nodetree-fold-right f base ntree))
b
d))
(define (digits-fold-left f b d)
(fold-left (lambda (base ntree)
(nodetree-fold-left f base ntree))
b
d))
(define (ftree-fold-right proc base ftree)
(ftree-case ftree
(lambda () base)
(lambda (x) (nodetree-fold-right proc base x))
(lambda (l x r)
(define base* (digits-fold-right proc base r))
(define base** (ftree-fold-right proc base* x))
(digits-fold-right proc base** l))))
(define (ftree-fold-left proc base ftree)
(ftree-case ftree
(lambda () base)
(lambda (x) (nodetree-fold-left proc base x))
(lambda (l x r)
(define base* (digits-fold-left proc base l))
(define base** (ftree-fold-left proc base* x))
(digits-fold-left proc base** r))))
(define (insert-front ftree val monoid)
(ftree-case ftree
(lambda ()
(make-single val))
(lambda (a)
(make-rib monoid (list val) (make-empty) (list a)))
(lambda (l m r)
(if (= (length l) 4)
(make-rib monoid
(list val (car l))
(insert-front m (apply make-node3 monoid (cdr l)) monoid)
r)
(make-rib monoid (cons val l) m r)))))
(define (view-front ftree empty-k cons-k monoid)
(ftree-case ftree
empty-k
(lambda (a)
(cons-k a (make-empty)))
(lambda (l r m)
(cons-k (car l)
(rib-l (cdr l) r m monoid)))))
(define (list->tree l monoid)
(fold-right (lambda (val tree)
(insert-front tree val monoid))
(make-empty)
l))
(define (rib-l l m r monoid)
(if (null? l)
(view-front m
(lambda ()
(list->tree r monoid))
(lambda (x xs)
(make-rib monoid
(node->list x)
xs
r))
monoid)
(make-rib monoid l m r)))
(define (remove-front ftree monoid)
(view-front ftree
(lambda ()
(error 'remove-front "can't remove from an empty tree"))
values
monoid))
(define (insert-rear ftree val monoid)
(ftree-case ftree
(lambda ()
(make-single val))
(lambda (a)
(make-rib monoid (list a) (make-empty) (list val)))
(lambda (l m r)
;; TODO: should r be maintained in reverse order, rather than
;; normal?
;; yes! it will make concatenation slightly slower, but will
;; speed up inserts and removals
(if (= (length r) 4)
(make-rib monoid
l
(insert-rear m (apply make-node3 monoid (take r 3)) monoid)
(list (list-ref r 3) val))
(make-rib monoid l m (snoc r val))))))
(define (remove-rear ftree monoid)
(view-rear ftree
(lambda ()
(error 'remove-rear "can't remove from an empty tree"))
values
monoid))
(define (view-rear ftree empty-k snoc-k monoid)
(ftree-case ftree
empty-k
(lambda (a)
(snoc-k (make-empty) a))
(lambda (l r m)
(snoc-k (rib-r l r (but-last m) monoid)
(last m)))))
(define (rib-r l m r monoid)
(if (null? r)
(view-rear m
(lambda ()
(list->tree l monoid))
(lambda (m* r*)
(make-rib monoid l m* (node->list r*)))
monoid)
(make-rib monoid l m r)))
(define (insert-front/list tree l monoid)
(fold-right (lambda (val tree)
(insert-front tree val monoid))
tree
l))
(define (insert-rear/list tree l monoid)
(fold-left (lambda (tree val)
(insert-rear tree val monoid))
tree
l))
(define (app3 ftree1 ts ftree2 monoid)
(cond ((empty? ftree1)
(insert-front/list ftree2 ts monoid))
((empty? ftree2)
(insert-rear/list ftree1 ts monoid))
((single? ftree1)
(insert-front (insert-front/list ftree2 ts monoid)
(single-value ftree1)
monoid))
((single? ftree2)
(insert-rear (insert-rear/list ftree1 ts monoid)
(single-value ftree2)
monoid))
(else
(let ((l1 (rib-left ftree1))
(m1 (rib-middle ftree1))
(r1 (rib-right ftree1))
(l2 (rib-left ftree2))
(m2 (rib-middle ftree2))
(r2 (rib-right ftree2)))
(make-rib monoid
l1
(app3 m1
(nodes (append r1 ts l2) monoid)
m2
monoid)
r2)))))
(define (nodes lst monoid)
;; *sigh*
(let ((a (car lst))
(b (cadr lst)))
(cond ((null? (cddr lst))
(list (make-node2 monoid a b)))
((null? (cdddr lst))
(list (make-node3 monoid a b (caddr lst))))
((null? (cddddr lst))
(list (make-node2 monoid a b)
(make-node2 monoid (caddr lst) (cadddr lst))))
(else
(cons (make-node3 monoid a b (caddr lst))
(nodes (cdddr lst) monoid))))))
(define (reverse-tree tree monoid)
(ftree-case tree
(lambda () (make-empty))
(lambda (x) (make-single (reverse-nodetree x monoid)))
(lambda (l x r)
(make-rib monoid
(reverse-digit r monoid)
(reverse-tree x monoid)
(reverse-digit l monoid)))))
(define (reverse-digit l monoid)
(map-reverse (lambda (a) (reverse-nodetree a monoid)) l))
(define (reverse-nodetree l monoid)
(cond ((node2? l)
(make-node2 monoid
(reverse-nodetree (node2-b l) monoid)
(reverse-nodetree (node2-a l) monoid)))
((node3? l)
(make-node3 monoid
(reverse-nodetree (node3-c l) monoid)
(reverse-nodetree (node3-b l) monoid)
(reverse-nodetree (node3-a l) monoid)))
(else l)))
;; generalising fingertrees with monoids
;; I think I'm going to need a "configuration" type and pass it around
;; in order to generalize over arbitrary monoids
;; call the type iMeasured or something
(define-record-type monoid*
;; a monoid, but augmented with a procedure to convert objects into the
;; monoid type
(fields (immutable empty mempty)
(immutable append mappend)
(immutable convert mconvert)))
(define (measure-digit obj monoid)
(fold-left (lambda (i a)
((mappend monoid) i (measure-nodetree a monoid)))
(mempty monoid)
obj))
(define (measure-ftree obj monoid)
(cond ((empty? obj)
(mempty monoid))
((single? obj)
(measure-nodetree (single-value obj) monoid))
(else
(rib-measure obj))))
(define (measure-nodetree obj monoid)
(cond ((node2? obj) (node2-measure obj))
((node3? obj) (node3-measure obj))
(else ((mconvert monoid) obj))))
(define (split proc tree monoid)
(if (empty? tree)
(values (make-empty) (make-empty))
(if (proc (measure-ftree tree monoid))
(let-values (((l x r) (split-tree proc (mempty monoid) tree monoid)))
(values l (insert-front r x monoid)))
(values tree (make-empty)))))
(define (split-tree proc i tree monoid)
(ftree-case tree
(lambda ()
(error 'split-tree "shouldn't happen?"))
(lambda (a)
(values (make-empty) a (make-empty)))
(lambda (l m r)
(define app (mappend monoid))
(define vpr (app i (measure-digit l monoid)))
(define vm (app vpr (measure-ftree m monoid)))
(cond ((proc vpr)
(let-values (((l* x* r*) (split-digit proc i l monoid)))
(values (list->tree l* monoid)
x*
(rib-l r* m r monoid))))
((proc vm)
(let*-values (((ml xs mr) (split-tree proc vpr m monoid))
((l* x* r*)
(split-digit proc
(app vpr (measure-ftree ml monoid))
(node->list xs)
monoid)))
(values (rib-r l ml l* monoid)
x*
(rib-l r* mr r monoid))))
(else
(let-values (((l* x* r*) (split-digit proc vm r monoid)))
(values (rib-r l m l* monoid)
x*
(list->tree r* monoid))))))))
(define (split-digit proc i xs monoid)
(if (null? (cdr xs))
(values '() (car xs) '())
(let ((i* ((mappend monoid) i (measure-nodetree (car xs) monoid))))
(if (proc i*)
(values '() (car xs) (cdr xs))
(let-values (((l x r)
(split-digit proc i* (cdr xs) monoid)))
(values (cons (car xs) l) x r))))))
;; exported interface
(define-condition-type &fingertree-empty
&assertion
make-fingertree-empty-condition
fingertree-empty-condition?)
(define-record-type (fingertree %make-fingertree fingertree?)
(fields tree monoid))
(define (%wrap fingertree tree)
(%make-fingertree tree
(fingertree-monoid fingertree)))
(define (make-fingertree id append convert)
(%make-fingertree (make-empty)
(make-monoid* id append convert)))
(define (fingertree-cons a fingertree)
;; TODO: should it obey normal cons interface, or have fingertree
;; first?
(%wrap fingertree
(insert-front (fingertree-tree fingertree)
a
(fingertree-monoid fingertree))))
(define (fingertree-snoc fingertree a)
(%wrap fingertree
(insert-rear (fingertree-tree fingertree)
a
(fingertree-monoid fingertree))))
(define (fingertree-uncons fingertree)
(call-with-values
(lambda ()
(define t (fingertree-tree fingertree))
(when (empty? t)
(raise
(condition
(make-fingertree-empty-condition)
(make-who-condition 'fingertree-uncons)
(make-message-condition "There are no elements to uncons")
(make-irritants-condition (list fingertree)))))
(remove-front t (fingertree-monoid fingertree)))
(lambda (val rest)
(values val
(%wrap fingertree rest)))))
(define (fingertree-unsnoc fingertree)
(call-with-values
(lambda ()
(define t (fingertree-tree fingertree))
(when (empty? t)
(raise
(condition
(make-fingertree-empty-condition)
(make-who-condition 'fingertree-unsnoc)
(make-message-condition "There are no elements to unsnoc")
(make-irritants-condition (list fingertree)))))
(remove-rear t (fingertree-monoid fingertree)))
(lambda (rest val)
(values (%wrap fingertree rest) val))))
(define (fingertree-empty? fingertree)
(empty? (fingertree-tree fingertree)))
(define (fingertree-append fingertree1 fingertree2)
(%wrap fingertree1
(app3 (fingertree-tree fingertree1)
'()
(fingertree-tree fingertree2)
(fingertree-monoid fingertree1))))
;; TODO: fix this
(define (list->fingertree l id append convert)
(define monoid (make-monoid* id append convert))
(%make-fingertree (list->tree l monoid) monoid))
(define (fingertree->list t)
(fingertree-fold-right cons '() t))
(define (fingertree-measure fingertree)
(measure-ftree (fingertree-tree fingertree)
(fingertree-monoid fingertree)))
(define (fingertree-split p fingertree)
(call-with-values
(lambda ()
(split p
(fingertree-tree fingertree)
(fingertree-monoid fingertree)))
(lambda (a b)
(values (%wrap fingertree a)
(%wrap fingertree b)))))
(define (fingertree-split3 p fingertree)
(call-with-values
(lambda ()
(define monoid (fingertree-monoid fingertree))
(split-tree p
(mempty monoid)
(fingertree-tree fingertree)
monoid))
(lambda (a b c)
(values (%wrap fingertree a)
b
(%wrap fingertree c)))))
(define (fingertree-fold f b fingertree)
(ftree-fold-left f b (fingertree-tree fingertree)))
(define (fingertree-fold-right f b fingertree)
(ftree-fold-right f b (fingertree-tree fingertree)))
(define (fingertree-reverse fingertree)
(%wrap fingertree
(reverse-tree (fingertree-tree fingertree)
(fingertree-monoid fingertree))))
)