-
Notifications
You must be signed in to change notification settings - Fork 7
/
visualize_json_results_comparison.py
454 lines (392 loc) · 18.2 KB
/
visualize_json_results_comparison.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
"""
Used for getting overlayed masks from different models for comparison
"""
import argparse
import json
import os
import os.path as osp
from collections import defaultdict
import cv2
import numpy as np
import torch
import tqdm
from detectron2.data import DatasetCatalog
from detectron2.data import MetadataCatalog
from detectron2.structures import BoxMode
from detectron2.structures import Boxes
from detectron2.structures import Instances
from detectron2.utils.logger import setup_logger
from detectron2.utils.visualizer import (
Visualizer,
_create_text_labels,
GenericMask,
ColorMode,
VisImage,
random_color,
_SMALL_OBJECT_AREA_THRESH,
)
from fvcore.common.file_io import PathManager
from indiscapes_dataset import register_dataset
register_dataset(combined_train_val=False)
class CustomVisualizer(Visualizer):
def __init__(self, img_rgb, metadata=None, scale=1.0, instance_mode=ColorMode.IMAGE):
"""
Args:
img_rgb: a numpy array of shape (H, W, C), where H and W correspond to
the height and width of the image respectively. C is the number of
color channels. The image is required to be in RGB format since that
is a requirement of the Matplotlib library. The image is also expected
to be in the range [0, 255].
metadata (Metadata): image metadata.
instance_mode (ColorMode): defines one of the pre-defined style for drawing
instances on an image.
"""
self.img = np.asarray(img_rgb).clip(0, 255).astype(np.uint8)
if metadata is None:
metadata = MetadataCatalog.get("__nonexist__")
self.metadata = metadata
self.output = VisImage(self.img, scale=scale)
self.cpu_device = torch.device("cpu")
# too small texts are useless, therefore clamp to 9
self._default_font_size = max(np.sqrt(self.output.height * self.output.width) // 50, 10 // scale)
self._instance_mode = instance_mode
def draw_instance_predictions(self, predictions, given_colour=None):
"""
Draw instance-level prediction results on an image.
Args:
predictions (Instances): the output of an instance detection/segmentation
model. Following fields will be used to draw:
"pred_boxes", "pred_classes", "scores", "pred_masks" (or "pred_masks_rle").
Returns:
output (VisImage): image object with visualizations.
"""
boxes = None
scores = None
classes = predictions.pred_classes if predictions.has("pred_classes") else None
labels = None
keypoints = predictions.pred_keypoints if predictions.has("pred_keypoints") else None
if predictions.has("pred_masks"):
masks = np.asarray(predictions.pred_masks)
masks = [GenericMask(x, self.output.height, self.output.width) for x in masks]
else:
masks = None
if self._instance_mode == ColorMode.SEGMENTATION and self.metadata.get("thing_colors"):
colors = [self._jitter([x / 255 for x in self.metadata.thing_colors[c]]) for c in classes]
alpha = 0.8
else:
colors = None
alpha = 0
if self._instance_mode == ColorMode.IMAGE_BW:
self.output.img = self._create_grayscale_image(
(predictions.pred_masks.any(dim=0) > 0).numpy() if predictions.has("pred_masks") else None
)
alpha = 0.3
self.overlay_instances(
masks=masks,
boxes=boxes,
labels=labels,
keypoints=keypoints,
assigned_colors=colors,
alpha=alpha,
given_colour=given_colour,
)
return self.output
def draw_dataset_dict(self, dic, given_colour=None):
"""
Draw annotations/segmentaions in Detectron2 Dataset format.
Args:
dic (dict): annotation/segmentation data of one image, in Detectron2 Dataset format.
Returns:
output (VisImage): image object with visualizations.
"""
annos = dic.get("annotations", None)
if annos:
if "segmentation" in annos[0]:
masks = [x["segmentation"] for x in annos]
else:
masks = None
if "keypoints" in annos[0]:
keypts = [x["keypoints"] for x in annos]
keypts = np.array(keypts).reshape(len(annos), -1, 3)
else:
keypts = None
boxes = [
BoxMode.convert(x["bbox"], x["bbox_mode"], BoxMode.XYXY_ABS) if len(x["bbox"]) == 4 else x["bbox"]
for x in annos
]
colors = None
category_ids = [x["category_id"] for x in annos]
if self._instance_mode == ColorMode.SEGMENTATION and self.metadata.get("thing_colors"):
colors = [self._jitter([x / 255 for x in self.metadata.thing_colors[c]]) for c in category_ids]
names = self.metadata.get("thing_classes", None)
labels = _create_text_labels(
category_ids,
scores=None,
class_names=["Hv", "Hp", "CLS", "BL", "PD", "PB", "CC", "LM", "D/P"],
is_crowd=[x.get("iscrowd", 0) for x in annos],
)
labels = None
boxes = None
alpha = 0
self.overlay_instances(
labels=labels,
boxes=boxes,
masks=masks,
keypoints=keypts,
assigned_colors=colors,
alpha=alpha,
given_colour=given_colour,
)
sem_seg = dic.get("sem_seg", None)
if sem_seg is None and "sem_seg_file_name" in dic:
with PathManager.open(dic["sem_seg_file_name"], "rb") as f:
sem_seg = Image.open(f)
sem_seg = np.asarray(sem_seg, dtype="uint8")
if sem_seg is not None:
self.draw_sem_seg(sem_seg, area_threshold=0, alpha=0.5)
pan_seg = dic.get("pan_seg", None)
if pan_seg is None and "pan_seg_file_name" in dic:
with PathManager.open(dic["pan_seg_file_name"], "rb") as f:
pan_seg = Image.open(f)
pan_seg = np.asarray(pan_seg)
from panopticapi.utils import rgb2id
pan_seg = rgb2id(pan_seg)
if pan_seg is not None:
segments_info = dic["segments_info"]
pan_seg = torch.Tensor(pan_seg)
self.draw_panoptic_seg(pan_seg, segments_info, area_threshold=0, alpha=0.5)
return self.output
def overlay_instances(
self, *, boxes=None, labels=None, masks=None, keypoints=None, assigned_colors=None, alpha=0.5, given_colour=None
):
"""
Args:
boxes (Boxes, RotatedBoxes or ndarray): either a :class:`Boxes`,
or an Nx4 numpy array of XYXY_ABS format for the N objects in a single image,
or a :class:`RotatedBoxes`,
or an Nx5 numpy array of (x_center, y_center, width, height, angle_degrees) format
for the N objects in a single image,
labels (list[str]): the text to be displayed for each instance.
masks (masks-like object): Supported types are:
* :class:`detectron2.structures.PolygonMasks`,
:class:`detectron2.structures.BitMasks`.
* list[list[ndarray]]: contains the segmentation masks for all objects in one image.
The first level of the list corresponds to individual instances. The second
level to all the polygon that compose the instance, and the third level
to the polygon coordinates. The third level should have the format of
[x0, y0, x1, y1, ..., xn, yn] (n >= 3).
* list[ndarray]: each ndarray is a binary mask of shape (H, W).
* list[dict]: each dict is a COCO-style RLE.
keypoints (Keypoint or array like): an array-like object of shape (N, K, 3),
where the N is the number of instances and K is the number of keypoints.
The last dimension corresponds to (x, y, visibility or score).
assigned_colors (list[matplotlib.colors]): a list of colors, where each color
corresponds to each mask or box in the image. Refer to 'matplotlib.colors'
for full list of formats that the colors are accepted in.
Returns:
output (VisImage): image object with visualizations.
"""
num_instances = None
if boxes is not None:
boxes = self._convert_boxes(boxes)
num_instances = len(boxes)
if masks is not None:
masks = self._convert_masks(masks)
if num_instances:
assert len(masks) == num_instances
else:
num_instances = len(masks)
if keypoints is not None:
if num_instances:
assert len(keypoints) == num_instances
else:
num_instances = len(keypoints)
keypoints = self._convert_keypoints(keypoints)
if labels is not None:
assert len(labels) == num_instances
if assigned_colors is None:
assigned_colors = [random_color(rgb=True, maximum=1) for _ in range(num_instances)]
if num_instances == 0:
return self.output
if boxes is not None and boxes.shape[1] == 5:
return self.overlay_rotated_instances(boxes=boxes, labels=labels, assigned_colors=assigned_colors)
# Display in largest to smallest order to reduce occlusion.
areas = None
if boxes is not None:
areas = np.prod(boxes[:, 2:] - boxes[:, :2], axis=1)
elif masks is not None:
areas = np.asarray([x.area() for x in masks])
if areas is not None:
sorted_idxs = np.argsort(-areas).tolist()
# Re-order overlapped instances in descending order.
boxes = boxes[sorted_idxs] if boxes is not None else None
labels = [labels[k] for k in sorted_idxs] if labels is not None else None
masks = [masks[idx] for idx in sorted_idxs] if masks is not None else None
assigned_colors = [assigned_colors[idx] for idx in sorted_idxs]
keypoints = keypoints[sorted_idxs] if keypoints is not None else None
for i in range(num_instances):
# color = assigned_colors[i]
color = given_colour
if boxes is not None:
self.draw_box(boxes[i], edge_color=color)
if masks is not None:
for segment in masks[i].polygons:
self.draw_polygon(segment.reshape(-1, 2), color, alpha=alpha)
if labels is not None:
# first get a box
if boxes is not None:
x0, y0, x1, y1 = boxes[i]
text_pos = (x0, y0) # if drawing boxes, put text on the box corner.
horiz_align = "left"
elif masks is not None:
# skip small mask without polygon
if len(masks[i].polygons) == 0:
continue
x0, y0, x1, y1 = masks[i].bbox()
# draw text in the center (defined by median) when box is not drawn
# median is less sensitive to outliers.
text_pos = np.median(masks[i].mask.nonzero(), axis=1)[::-1]
horiz_align = "center"
else:
continue # drawing the box confidence for keypoints isn't very useful.
# for small objects, draw text at the side to avoid occlusion
instance_area = (y1 - y0) * (x1 - x0)
if instance_area < _SMALL_OBJECT_AREA_THRESH * self.output.scale or y1 - y0 < 40 * self.output.scale:
if y1 >= self.output.height - 5:
text_pos = (x1, y0)
else:
text_pos = (x0, y1)
height_ratio = (y1 - y0) / np.sqrt(self.output.height * self.output.width)
lighter_color = self._change_color_brightness(color, brightness_factor=0.7)
font_size = np.clip((height_ratio - 0.02) / 0.08 + 1, 1.2, 2) * 0.5 * self._default_font_size
text_pos = (x0, (y0 + y1) / 2)
# lighter_color = (1.0, 1.0, 1.0)
self.draw_text(
labels[i],
text_pos,
color=lighter_color,
horizontal_alignment=horiz_align,
font_size=font_size,
)
# draw keypoints
if keypoints is not None:
for keypoints_per_instance in keypoints:
self.draw_and_connect_keypoints(keypoints_per_instance)
return self.output
# def draw_text(
# self,
# text,
# position,
# *,
# font_size=None,
# color="g",
# horizontal_alignment="center",
# rotation=0
# ):
# """
# Args:
# text (str): class label
# position (tuple): a tuple of the x and y coordinates to place text on image.
# font_size (int, optional): font of the text. If not provided, a font size
# proportional to the image width is calculated and used.
# color: color of the text. Refer to `matplotlib.colors` for full list
# of formats that are accepted.
# horizontal_alignment (str): see `matplotlib.text.Text`
# rotation: rotation angle in degrees CCW
# Returns:
# output (VisImage): image object with text drawn.
# """
# if not font_size:
# font_size = self._default_font_size
# # since the text background is dark, we don't want the text to be dark
# color = np.maximum(list(mplc.to_rgb(color)), 0.2)
# color[np.argmax(color)] = max(0.8, np.max(color))
# x, y = position
# self.output.ax.text(
# x,
# y,
# text,
# size=font_size * self.output.scale,
# family="sans-serif",
# bbox={"facecolor": "black", "alpha": 0, "pad": 0.7, "edgecolor": "none"},
# verticalalignment="top",
# horizontalalignment=horizontal_alignment,
# color=color,
# zorder=10,
# rotation=rotation,
# )
# return self.output
def create_instances(predictions, image_size):
ret = Instances(image_size)
score = np.asarray([x["score"] for x in predictions])
chosen = (score > args.conf_threshold).nonzero()[0]
score = score[chosen]
bbox = np.asarray([predictions[i]["bbox"] for i in chosen]).reshape(-1, 4)
bbox = BoxMode.convert(bbox, BoxMode.XYWH_ABS, BoxMode.XYXY_ABS)
labels = np.asarray([dataset_id_map(predictions[i]["category_id"]) for i in chosen])
ret.scores = score
ret.pred_boxes = Boxes(bbox)
ret.pred_classes = labels
try:
ret.pred_masks = [predictions[i]["segmentation"] for i in chosen]
except KeyError:
pass
return ret
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="A script that visualizes the json predictions from COCO or LVIS dataset."
)
parser.add_argument("--inputs", required=True, nargs="+", help="JSON file produced by the model")
parser.add_argument("--output", required=True, help="output directory")
parser.add_argument("--dataset", help="name of the dataset", default="indiscapes_val")
parser.add_argument("--conf-threshold", default=0.5, type=float, help="confidence threshold")
args = parser.parse_args()
logger = setup_logger()
predictions = list()
for input in args.inputs:
with PathManager.open(input, "r") as f:
predictions.append(json.load(f))
pred_by_input = list(defaultdict(list))
for prediction in predictions:
pred_by_image = defaultdict(list)
for p in prediction:
pred_by_image[p["image_id"]].append(p)
pred_by_input.append(pred_by_image)
dicts = list(DatasetCatalog.get(args.dataset))
metadata = MetadataCatalog.get(args.dataset)
if hasattr(metadata, "thing_dataset_id_to_contiguous_id"):
def dataset_id_map(ds_id):
return metadata.thing_dataset_id_to_contiguous_id[ds_id]
elif "lvis" in args.dataset:
# LVIS results are in the same format as COCO results, but have a different
# mapping from dataset category id to contiguous category id in [0, #categories - 1]
def dataset_id_map(ds_id):
return ds_id - 1
elif "indiscapes" in args.dataset:
def dataset_id_map(ds_id):
return ds_id
else:
raise ValueError(f"Unsupported dataset: {args.dataset}")
os.makedirs(args.output, exist_ok=True)
for dic in tqdm.tqdm(dicts):
img = cv2.imread(dic["file_name"], cv2.IMREAD_COLOR)[:, :, ::-1]
basename = os.path.basename(dic["file_name"])
# vis_preds = list()
img_canvas = img.copy()
colours = [(0, 1, 0), (1, 0, 0), (1, 1, 1)] # Baseline (green) # Ours (red) # GT (white)
vis = CustomVisualizer(img_canvas, metadata)
img_canvas = vis.draw_dataset_dict(dic, colours[-1]).get_image()
for i, pred_by_image in enumerate(pred_by_input):
predictions = create_instances(pred_by_image[dic["image_id"]], img.shape[:2])
vis = CustomVisualizer(img_canvas, metadata)
img_canvas = vis.draw_instance_predictions(predictions, given_colour=colours[i]).get_image()
# vis_preds.append(vis_pred)
# stitched_image = np.vstack((vis_gt, np.vstack(vis_preds)))
# if os.path.exists(os.path.join(args.output, basename)):
# When there is already a file with that name
# basename = "_".join(dic['file_name'].split('/')[-3:])
filename = f"{osp.splitext('_'.join(dic['file_name'].split('/')[-3:]))[0]}.jpg"
cv2.imwrite(os.path.join(args.output, filename), cv2.cvtColor(img_canvas, cv2.COLOR_RGB2BGR))
# cv2.imshow("img", stitched_image)
# cv2.waitKey(0)
# cv2.destroyAllWindows()