-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathcanny.py
57 lines (42 loc) · 1.49 KB
/
canny.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
from scipy import ndimage as ndi
from skimage import io, feature
from skimage.color import rgb2gray
from skimage.feature import blob_dog
from scipy import ndimage
from copy import deepcopy
def img_open(filename):
im = io.imread(filename)
return im
def edge(filename):
im = img_open(filename)
# Zeroing red channel, combined blue + green channels into
# single grayscale channel.
im[:, :, 0] = 0
im_grey = ndimage.gaussian_filter(rgb2gray(im), 2)
# Compute the Canny filter for two values of sigma
edges = feature.canny(im_grey, sigma=3)
mask = ndi.binary_fill_holes(edges)
return mask
def rm_back(mask, filename):
im = img_open(filename)
no_back = deepcopy(im)
for x in range(mask.shape[0]):
for y in range(mask.shape[1]):
if (mask[x, y] == 0):
no_back[x, y] = im[x, y] * mask[x, y]
return no_back
def in_range(x, y, mask):
# 40% hard coded
centerx = mask.shape[0]/2
centery = mask.shape[1]/2
realx = abs(x-centerx)
realy = abs(y-centery)
if(realx**2 + realy**2 < (0.5*centerx)**2):
return True
else:
return False
def blobs(im_no_back):
im_no_back = rgb2gray(im_no_back)
blob_list = blob_dog(im_no_back, min_sigma=2, threshold=0.6)
blob_list[:, 2] = blob_list[:, 2] * 2**0.5
return [blob_list]