-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
452 lines (309 loc) · 16.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
# SPDX-FileCopyrightText: 2024 Idiap Research Institute <[email protected]>
# SPDX-FileContributor: Alina Elena Baia <[email protected]>
#
# SPDX-License-Identifier: CC-BY-NC-SA-4.0
import argparse
import os
import pandas as pd
import numpy as np
import torch
import random
import json
from PIL import Image
import hdbscan
from umap import UMAP
import pickle
from collections import Counter
from sklearn.metrics.pairwise import cosine_similarity
from bertopic import BERTopic
from tqdm import tqdm
import imagebind.data
import torch
from imagebind.models import imagebind_model
from imagebind.models.imagebind_model import ModalityType
import torch.nn as nn
import torch.optim as optim
from utils import classification_metrics
import copy
def cluster_images(image_embs, reducer, clusterer, cluster_size, save_dir, file_cluster_name = "clusterer_model.pkl"):
reducer.fit(image_embs)
reduced_embeddings = reducer.transform(image_embs)
clusterer.fit(reduced_embeddings)
cluster_ids = list(set(clusterer.labels_))
cluster_ids = sorted(cluster_ids)
predicted_clusters = list(clusterer.labels_)
#save clusterer model
list_pickle = open(os.path.join(save_dir, file_cluster_name), 'wb')
pickle.dump(clusterer,list_pickle)
list_pickle.close()
return predicted_clusters, clusterer
#hdbscan documentation: https://hdbscan.readthedocs.io/en/latest/soft_clustering_explanation.html
def get_exemplars(cluster_id, condensed_tree):
raw_tree = condensed_tree._raw_tree
# Just the cluster elements of the tree, excluding singleton points
cluster_tree = raw_tree[raw_tree['child_size'] > 1]
# Get the leaf cluster nodes under the cluster we are considering
leaves = hdbscan.plots._recurse_leaf_dfs(cluster_tree, cluster_id)
# Now collect up the last remaining points of each leaf cluster (the heart of the leaf)
result = np.array([])
for leaf in leaves:
max_lambda = raw_tree['lambda_val'][raw_tree['parent'] == leaf].max()
points = raw_tree['child'][(raw_tree['parent'] == leaf) &
(raw_tree['lambda_val'] == max_lambda)]
result = np.hstack((result, points))
return result
def get_clusters_emebeddings(clusterer, image_embs, images_name):
cluster_ids = list(set(clusterer.labels_))
cluster_ids = sorted(cluster_ids)
#print("cluster_ids: ", cluster_ids)
cluster_embeddings = []
#get exemplars
exemplars_imgs = {}
exemplars_embeds= {}
clusters_embeddings = []
condensed_tree = clusterer.condensed_tree_
for i, c in enumerate(condensed_tree._select_clusters()):
if i != -1:
exemplars = get_exemplars(c, condensed_tree)
exemplars_imgs[i] = {"idxs": [int(index) for index in exemplars],
"image_names": [images_name[int(index)] for index in exemplars]}
for cluster_id in cluster_ids:
if cluster_id != -1:
indices = np.array([index for index in exemplars_imgs[cluster_id]["idxs"]])
if isinstance(image_embs, torch.Tensor):
image_embs = image_embs.cpu().numpy()
embeds = image_embs[indices]
cluster_embeddings.append(np.mean(embeds, axis=0).reshape(1,-1))
exemplars_embeds[cluster_id] = embeds
return cluster_embeddings, exemplars_imgs, exemplars_embeds
def get_candidates(dataset_df, tags_reprs_embeddings, model_bertopic):
cluster_topics_words = {}
all_clusters = set(dataset_df["clusters"].tolist())
for cluster_id in np.arange(0,len(all_clusters)-1):
df_selected = dataset_df[dataset_df["clusters"]==cluster_id]
selected_img_idxs = df_selected.index.values.tolist()
images_name= list(df_selected["image_name"])
selected_tags_reprs = df_selected["final_tags"].to_list()
selected_tags_reprs_embeddings = tags_reprs_embeddings[selected_img_idxs]
topics, probs = model_bertopic.fit_transform(selected_tags_reprs, selected_tags_reprs_embeddings.cpu().numpy())
tmp = []
for topic_id in model_bertopic.topic_labels_.keys():
tmp.append([x[0] for x in model_bertopic.topic_representations_[topic_id]])
cluster_topics_words[int(cluster_id)] = Counter([item for sublist in tmp for item in sublist])
clusters_candidates = [list(cluster_topics_words[i].keys()) for i in cluster_topics_words.keys() ]
return clusters_candidates
def get_clusters_descriptors(dataset_df, candidates, cluster_embeddings, encoder_model, device):
clusters_descriptors = {}
all_clusters = set(dataset_df["clusters"].tolist())
for cluster_id in np.arange(0,len(all_clusters)-1):
candidates_embeddings = []
batch_size = 20
nr_iterations = int(np.ceil(len(candidates[cluster_id])/batch_size))
for i in tqdm(range(nr_iterations)):
start_index = i * batch_size
end_index = (i * batch_size) + batch_size
inputs = {
ModalityType.TEXT: imagebind.data.load_and_transform_text(candidates[cluster_id][start_index:end_index], device),
}
with torch.no_grad():
embeddings = encoder_model(inputs)
candidates_embeddings.extend(embeddings[ModalityType.TEXT].cpu().numpy().tolist())
candidates_vs_cluster_embs = cosine_similarity(np.array(candidates_embeddings), cluster_embeddings[cluster_id])
sim_matrix_torch = torch.from_numpy(candidates_vs_cluster_embs)
top_k = 10
topk_similar_vals ,topk_similar_idx = sim_matrix_torch.topk(top_k, dim=0, largest= True, sorted = True)
tmp_cluster_desc = []
for element in list(np.array(candidates[cluster_id])[topk_similar_idx]):
tmp_cluster_desc.append(element[0])
clusters_descriptors["c_{}".format(cluster_id)] = {"descriptor": ", ".join(tmp_cluster_desc)
}
#print("clusters_descriptors: ", clusters_descriptors)
return clusters_descriptors
def get_clusters_descriptors_embeds(encoder_model, clusters_descriptors, device, batch_size = 20):
descriptors = []
for key, value in clusters_descriptors.items():
descriptors.append(value['descriptor'])
nr_iterations = int(np.ceil(len(descriptors)/batch_size))
descriptors_embeddings = []
for i in tqdm(range(nr_iterations)):
start_index = i * batch_size
end_index = (i * batch_size) + batch_size
inputs = {
ModalityType.TEXT: imagebind.data.load_and_transform_text(descriptors[start_index:end_index], device),
}
with torch.no_grad():
embeddings = encoder_model(inputs)
descriptors_embeddings.extend(embeddings[ModalityType.TEXT].cpu().numpy().tolist())
return np.array(descriptors_embeddings)
# Define the model
class Model(nn.Module):
def __init__(self, input_dims):
super(Model, self).__init__()
self.layer = nn.Linear(input_dims, 2, bias = False)
def forward(self, x):
return self.layer(x)
def evaluate(model, input_features, gt_labels, device):
model.to(device)
model.eval()
with torch.no_grad():
outputs = model(input_features.to(device))
predicted_classes = torch.argmax(outputs, dim=1)
metrics = classification_metrics(gt_labels, predicted_classes.detach().cpu().numpy() )
return metrics
def train(model, input_features, gt_labels, eval_features, eval_labels, optimizer, criterion, device, use_eval, epochs = 100, batch_size = 8):
best_model_state_dict= None
best_f1_score = 0
model.to(device)
for epoch in tqdm(range(n_epochs)):
model.train()
indices = torch.randperm(input_features.size()[0])
input_features=input_features[indices]
gt_labels=gt_labels[indices]
for i in range(0, len(input_features), batch_size):
Xbatch = input_features[i:i+batch_size].to(device)
y_pred = model(Xbatch)
ybatch = gt_labels.long()[i:i+batch_size].to(device)
loss = criterion(y_pred, ybatch)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if use_eval:
metrics = evaluate(model, eval_features, eval_labels, device)
eval_f1_score = metrics["Overview"]["F1 Score"]
#print("epoch: ", epoch, eval_f1_score)
if eval_f1_score > best_f1_score:
best_f1_score = eval_f1_score
best_model_state_dict = copy.deepcopy(model.state_dict())
return model, best_model_state_dict
if __name__ == '__main__':
#parse arguments
parser = argparse.ArgumentParser()
parser.add_argument('-dataset_train', type=str, default='./data/dataset_train')
parser.add_argument('-dataset_test', type=str, default='./data/dataset_test')
parser.add_argument('-dataset_val', type=str, default='./data/dataset_val')
parser.add_argument("-csv_train", "--csv_name_train", help="csv with the image names, labels, and tags", type=str, default ="./generated_data/final_image_tags.csv")
parser.add_argument("-csv_test", "--csv_name_test", help="csv with the image names and labels", type=str, default ="./data/dataset_test_info.csv")
parser.add_argument("-csv_val", "--csv_name_val", help="csv with the image names and labels", type=str, default ="./data/dataset_val_info.csv")
parser.add_argument("-embeds_train", "--embeddings_train", help="embeddings file to use for clustering/training", type=str, default ="./generated_data/image_embeddings_train.npy")
parser.add_argument("-embeds_test", "--embeddings_test", help="embeddings file to use for testing", type=str, default ="./generated_data/image_embeddings_test.npy")
parser.add_argument("-embeds_val", "--embeddings_val", help="embeddings file to use for validation", type=str, default ="./generated_data/image_embeddings_val.npy")
parser.add_argument("-tags_embeds", "--embeddings_tags_reprs_train", help="embeddings fo tags represetantion", type=str, default ="./generated_data/tags_embeddings_train.npy")
parser.add_argument("-cls", action="store_true", help="flag for training classifier")
parser.add_argument("-use_val", action="store_true", help="flag for using validation")
parser.add_argument("-cs", "--cluster_size", help="minimum cluster seize", type=int, default = 30)
parser.add_argument("-e", "--epochs", help="how many epochs for training", type=int, default = 100)
parser.add_argument("-b", "--batch_size", help="batch size", type=int, default=8)
parser.add_argument("-lr", "--learning_rate", help="learning rate", type=float, default = 0.01 )
parser.add_argument("-seed", "--seed", help="random seed", type=int, default = 19)
parser.add_argument('--save_dir', type=str, default='./results')
args = parser.parse_args()
seed = args.seed
random.seed(seed)
np.random.RandomState(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
if torch.cuda.is_available():
device = torch.device('cuda:0')
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.enabled = False
else:
device = torch.device('cpu')
encoder = imagebind_model.imagebind_huge(pretrained=True)
encoder.eval()
encoder.to(device)
dataset_dir = args.dataset_train
dataset_test = args.dataset_test
dataset_val = args.dataset_val
csv_train = args.csv_name_train
csv_test = args.csv_name_test
csv_val = args.csv_name_val
train_urls = pd.read_csv(csv_train)
test_urls = pd.read_csv(csv_test)
val_urls = pd.read_csv(csv_val)
print(train_urls.shape, test_urls.shape, val_urls.shape)
tags_reprs_embeds_train = args.embeddings_tags_reprs_train
cluster_size = args.cluster_size
cls_flag = args.cls
images_name = [os.path.join(dataset_dir, img_id) for img_id in list(train_urls["image_name"])]
images_name_test = [os.path.join(dataset_test, img_id) for img_id in list(test_urls["image_name"])]
images_name_val = [os.path.join(dataset_val, img_id) for img_id in list(val_urls["image_name"])]
##########################################
image_embs = np.load(args.embeddings_train)
image_embs /= torch.from_numpy(image_embs).norm(dim =1, keepdim =True)
image_embs_test = np.load(args.embeddings_test)
image_embs_test /= torch.from_numpy(image_embs_test).norm(dim =1, keepdim =True)
image_embs_val = np.load(args.embeddings_val)
image_embs_val /= torch.from_numpy(image_embs_val).norm(dim =1, keepdim =True)
print(image_embs.shape, image_embs_test.shape, image_embs_val.shape)
#########################################
tags_reprs_embeddings = np.load(tags_reprs_embeds_train)
tags_reprs_embeddings /= torch.from_numpy(tags_reprs_embeddings).norm(dim =1, keepdim =True)
print("tags_reprs_embeddings: ", tags_reprs_embeddings.shape)
save_dir = args.save_dir
if not os.path.exists(save_dir):
os.makedirs(save_dir)
#define reducer and clusterer models
reducer = UMAP(n_neighbors=15, n_components=5, min_dist=0.0, metric='cosine', random_state = seed, low_memory = False)
#https://hdbscan.readthedocs.io/en/latest/prediction_tutorial.html
clusterer = hdbscan.HDBSCAN(min_cluster_size=cluster_size, metric='euclidean', prediction_data=True)
#define the topic model
model_bertopic = BERTopic(language="english", min_topic_size=5,
umap_model = UMAP(n_neighbors=5, n_components=5, min_dist=0.0, metric='cosine', random_state = seed, low_memory = False))
#perform clustering
print("clustering...")
predicted_clusters, clusterer = cluster_images(image_embs,reducer, clusterer, cluster_size, save_dir, file_cluster_name = "clusterer_model.pkl")
#print("predicted_clusters: ", predicted_clusters)
#get cluster embeddings (i.e. centroid-like embeddings)
cluster_embeddings, exemplars_imgs, exemplars_embeds = get_clusters_emebeddings(clusterer, image_embs, images_name)
# perform topic modeling inside each cluster
train_urls["clusters"]= predicted_clusters
train_urls.to_csv(os.path.join(save_dir, "final_image_tags_with_clusters.csv"))
print("finished clustering.")
print("getting descriptors...")
candidates = get_candidates(train_urls, tags_reprs_embeddings, model_bertopic)
clusters_descriptors = get_clusters_descriptors(train_urls, candidates, cluster_embeddings, encoder, device)
print("clusters_descriptors: \n", clusters_descriptors)
with open(os.path.join(save_dir,'clusters_descriptors.json'), 'w') as fp:
json.dump(clusters_descriptors, fp)
print("done.")
if cls_flag:
print("training classifier")
use_val = args.use_val
print("use_val: ", use_val)
descriptors_embeds = get_clusters_descriptors_embeds(encoder, clusters_descriptors, device)
descriptors_embeds /= torch.from_numpy(descriptors_embeds).norm(dim =1, keepdim =True)
descriptors_embeds = descriptors_embeds.cpu().numpy()
print(descriptors_embeds.shape)
input_data_train = cosine_similarity(image_embs.cpu().numpy(), descriptors_embeds)
input_data_train = input_data_train.astype("float32")
X = torch.from_numpy(input_data_train)
Y = torch.from_numpy(np.array(train_urls["label"].tolist()).astype("float32"))
input_data_test= cosine_similarity(image_embs_test.cpu().numpy(), descriptors_embeds)
input_data_test = input_data_test.astype("float32")
X_test = torch.from_numpy(input_data_test)
Y_test_np = np.array(test_urls["label"].tolist())
input_data_val= cosine_similarity(image_embs_val.cpu().numpy(), descriptors_embeds)
input_data_val = input_data_val.astype("float32")
X_val = torch.from_numpy(input_data_val)
Y_val_np = np.array(val_urls["label"].tolist())
#train privacy model
n_epochs = args.epochs
batch_size = args.batch_size
lr = args.learning_rate
input_dim = len(clusters_descriptors)
model = Model(input_dim)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=lr)
model, best_model_state_dict = train(model, X, Y, X_val, Y_val_np, optimizer, criterion, device, use_val, epochs = n_epochs, batch_size = batch_size)
print("finished training classifier...")
if use_val:
model.load_state_dict(best_model_state_dict)
metrics = evaluate(model, X_test, Y_test_np, device)
for class_name, values in metrics.items():
print(f"**{class_name}**")
for metric_name, value in values.items():
print(f"{metric_name}: {value:.6f}")
print()
torch.save(model, os.path.join(save_dir, "classifier_model.pth"))