-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfind_points_3d_from_2d.py
185 lines (145 loc) · 6.2 KB
/
find_points_3d_from_2d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import numpy as np
# import pyimagej
from scyjava import config, jimport
debug = False
# headless
# config.add_option('-Xmx6g')
if not debug:
config.add_option('-Djava.awt.headless=true')
config.add_repositories(
{'scijava.public': 'https://maven.scijava.org/content/groups/public'})
config.add_endpoints('net.imagej:imagej:2.3.0')
config.add_endpoints('net.imagej:imagej-legacy:0.38.0')
HashMap = jimport("java.util.HashMap")
IJ = jimport('ij.IJ')
RoiManager = jimport('ij.plugin.frame.RoiManager')
Roi = jimport('ij.gui.Roi')
Duplicator = jimport('ij.plugin.Duplicator')
Slicer = jimport('ij.plugin.Slicer')
ZProjector = jimport('ij.plugin.ZProjector')
# Use these for visual debugging
if debug:
ImageJ = jimport('ij.ImageJ')
imagej = ImageJ()
# Hard coded parameters that can affect behavior
tolerance = 4
def save_rois_to_zip(rois, roi_filename):
DataOutputStream = jimport('java.io.DataOutputStream')
out = None
names = ['point_%05d.roi' % x for x in range(len(rois))]
ZipOutputStream = jimport('java.util.zip.ZipOutputStream')
ZipEntry = jimport('java.util.zip.ZipEntry')
BufferedOutputStream = jimport('java.io.BufferedOutputStream')
FileOutputStream = jimport('java.io.FileOutputStream')
zos = ZipOutputStream(BufferedOutputStream(FileOutputStream(roi_filename)))
out = DataOutputStream(BufferedOutputStream(zos))
RoiEncoder = jimport('ij.io.RoiEncoder')
re = RoiEncoder(out)
for k in range(len(rois)):
label = names[k]
roi = rois[k]
if roi is not None:
zos.putNextEntry(ZipEntry(label))
re.write(roi)
out.flush()
out.close()
def find_points(image_filename, csv_filename, output_filename, roi_filename):
# img = tifffile.imread(image_filename)
imp = IJ.openImage(image_filename)
# Overwrite calibration because reslice will try to interpolate
imp.getCalibration().pixelDepth = 1
imp.getCalibration().pixelWidth = 1
imp.getCalibration().pixelHeight = 1
points = np.genfromtxt(csv_filename, delimiter=';')
# Remove header (time_point;number;Area;Mean;Min;Max;X;Y)
points = points[1:, :]
print('Number of points: %d' % points.shape[0])
N = points.shape[0]
new_points = np.c_[points.copy(), -1.0 * np.ones(N)]
target_channel = 2
duplicator = Duplicator()
slicer = Slicer()
half_region_size = [25.0, 25.0]
# roi_manager = RoiManager(False)
rois = []
num_failed = 0
MaximumFinder = jimport('ij.plugin.filter.MaximumFinder')
ImageProcessor = jimport('ij.process.ImageProcessor')
PointRoi = jimport('ij.gui.PointRoi')
ResultsTable = jimport('ij.measure.ResultsTable')
results_table = ResultsTable.getResultsTable()
failed_points = []
# Loop over points and find their Z-values
for k in range(N):
point = points[k, :]
roi = Roi(point[6] - half_region_size[0],
point[7] - half_region_size[1], half_region_size[0] * 2.0,
half_region_size[1] * 2.0)
imp.setPosition(target_channel, 1, int(point[0]))
roi.setPosition(target_channel, 1, int(point[0]))
imp.setRoi(roi)
dup = duplicator.run(imp, target_channel, target_channel, 1,
imp.getNSlices(), int(point[0]), int(point[0]))
resliced = slicer.reslice(dup)
proj = ZProjector.run(resliced, 'avg')
maximum_finder = MaximumFinder()
maximum_finder.setup('', proj)
ip = proj.getProcessor()
mode = 4 # 3 is "POINT_SELECTION" in imagej, 0 is "SINGLE_POINTS", 4 is LIST
exclude_on_edges = False
is_EDM = False
_ = maximum_finder.findMaxima(ip, tolerance, False,
ImageProcessor.NO_THRESHOLD, mode,
exclude_on_edges, is_EDM)
# keep looking at https://imagej.nih.gov/ij/developer/source/ij/plugin/filter/MaximumFinder.java.html
# in analyzeAndMarkMaxima for how PointRoi are setup
if results_table.size() > 0:
x = results_table.getValue(0, 0)
y = results_table.getValue(1, 0)
pt_roi = PointRoi(x, y)
results_table.reset()
# TODO: pick up debugging here, inspect
if pt_roi is not None:
z_coord = y
new_points[k, 8] = z_coord
# Set the hyperstack position
pt_roi.setLocation(point[6], point[7])
pt_roi.setImage(imp)
pt_roi.setPosition(target_channel, int(z_coord), int(point[0]))
# roi_manager.addRoi(pt_roi)
rois += [pt_roi]
else:
print('Invalid PointRoi')
num_failed += 1
new_points[k, 8] = np.NAN
failed_points += [k]
if debug:
import time
proj.show()
proj.setRoi(PointRoi(x, y))
print([x, y])
print(pt_roi)
time.sleep(10)
else:
print('No results in table for point:')
num_failed += 1
new_points[k, 8] = np.NAN
failed_points += [k]
print([k] + new_points[k, :])
print('Number of failed detections: %d' % num_failed)
# Remove failed detections
new_points = np.delete(new_points, failed_points, 0)
np.savetxt(output_filename,
new_points.astype(int),
delimiter=';',
fmt='%i',
header='time_point;number;Area;Mean;Min;Max;X;Y;Z')
# save_rois_to_zip(rois, roi_filename)
if __name__ == '__main__':
# csv_filename = sys.argv[1]
# image_filename = sys.argv[2]
csv_filename = '/mnt/data/Finotto_Lise/project/04_Processed_Data/01_Annotated_Macrophages/201013_LBT070_5dpi_Pos003.csv'
image_filename = '/mnt/data/Finotto_Lise/project/02_Primary_Data/201013_LBT070_5dpi_Pos003.tif'
output_filename = '/mnt/data/Finotto_Lise/project/04_Processed_Data/02_Annotated_Macrophages_3D/201013_LBT070_5dpi_Pos003.csv'
roi_filename = '/mnt/data/Finotto_Lise/project/04_Processed_Data/02_Annotated_Macrophages_3D/201013_LBT070_5dpi_Pos003.zip'
find_points(image_filename, csv_filename, output_filename, roi_filename)