Skip to content

Latest commit

 

History

History
37 lines (31 loc) · 3.28 KB

evaluate_args.md

File metadata and controls

37 lines (31 loc) · 3.28 KB

Command-line usage guide for minimax.evaluate

You can evaluate student agent checkpoints using minimax.evaluate as follows:

python -m minimax.evaluate \
--seed 1 \
--log_dir <absolute path log directory> \
--xpid_prefix <select checkpoints with xpids matching this prefix> \
--env_names <csv string of test environment names> \
--n_episodes <number of trials per test environment> \
--results_path <path to results folder> \
--results_fname <filename of output results csv>

Some behaviors of minimax.evaluate to be aware of:

  • This command will search log_dir for all experiment directories with names matching xpid_prefix and evaluate the checkpoint named <checkpoint_name>.pkl.
  • minimax.evaluate assumes xpid values end with a unique index, so that they match the regex .*_[0-9]+$.
  • The results will be averaged over all such checkpoints (at most one checkpoint per matching experiment folder). Using the --xpid_prefix argument can be useful for evaluating corresponding to the same experimental configuration with different training seeds (and thus share an xpid prefix, e.g. <xpid_prefix_0>, <xpid_prefix_1>, <xpid_prefix_2>).

If you would like to evaluate a checkpoint for only a single experiment, specify the full experiment directory name using --xpid instead of using --xpid_prefix.

All command-line arguments

Argument Description
seed Random seed for evaluation
log_dir Directory containing experiment folders
xpid Name of experiment folder, i.e. the experiment ID
xpid_prefix Evaluate and average results over checkpoints for experiments with experiment IDs matching this prefix (ignores --xpid if set)
checkpoint_name Name of checkpoint to evaluate (in each matching experiment folder)
env_names Number of devices over which to shard the environment batch dimension
n_episodes Number of students in the autocurriculum
agent_idxs Indices of student agents to evaluate (csv of indices or * for all indices)
results_path Number of parallel environments
results_fname Number of parallel trials per environment (environment)
render_mode If set, renders the evaluation episode. Requires disabling JIT. Use 'ipython' if rendering inside an IPython notebook.