-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsearch.py
26 lines (20 loc) · 872 Bytes
/
search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
from models import Issue, Story, Bug, Epic
from embeddings import get_embeddings
from scipy.spatial.distance import cosine
def cosine_similarity(vec1, vec2):
"""Compute cosine similarity between two vectors."""
if vec1 and vec2:
return float(cosine(vec1, vec2)) # ensure the result is a plain float
return 1.0 # return maximum distance if any of the embeddings is missing
def simple_search(query_string: str):
return Issue.query.filter(Issue.title.ilike(f'%{query_string}%')).all()
def semantic_search(query_string: str):
query = Issue.query
issues = query.all()
if query:
# generate embedding for the search query
# TODO: your code here
# sort issues by their embedding similarity to the query embedding
#TODO: sorted_issues = ...
# return sorted_issues
pass # TODO: remove