forked from ZararB/LeelaZero
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnet.py
executable file
·608 lines (506 loc) · 23.4 KB
/
net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
#!/usr/bin/env python3
import argparse
import gzip
import os
import numpy as np
import proto.net_pb2 as pb
LC0_MAJOR = 0
LC0_MINOR = 21
LC0_MINOR_WITH_INPUT_TYPE_3 = 25
LC0_MINOR_WITH_INPUT_TYPE_4 = 26
LC0_MINOR_WITH_INPUT_TYPE_5 = 27
LC0_PATCH = 0
WEIGHTS_MAGIC = 0x1c0
def nested_getattr(obj, attr):
attributes = attr.split(".")
for a in attributes:
obj = getattr(obj, a)
return obj
class Net:
def __init__(self,
net=pb.NetworkFormat.NETWORK_SE_WITH_HEADFORMAT,
input=pb.NetworkFormat.INPUT_CLASSICAL_112_PLANE,
value=pb.NetworkFormat.VALUE_CLASSICAL,
policy=pb.NetworkFormat.POLICY_CLASSICAL,
moves_left=pb.NetworkFormat.MOVES_LEFT_V1):
if net == pb.NetworkFormat.NETWORK_SE:
net = pb.NetworkFormat.NETWORK_SE_WITH_HEADFORMAT
if net == pb.NetworkFormat.NETWORK_CLASSICAL:
net = pb.NetworkFormat.NETWORK_CLASSICAL_WITH_HEADFORMAT
self.pb = pb.Net()
self.pb.magic = WEIGHTS_MAGIC
self.pb.min_version.major = LC0_MAJOR
self.pb.min_version.minor = LC0_MINOR
self.pb.min_version.patch = LC0_PATCH
self.pb.format.weights_encoding = pb.Format.LINEAR16
self.weights = []
self.set_networkformat(net)
self.pb.format.network_format.input = input
self.set_policyformat(policy)
self.set_valueformat(value)
self.set_movesleftformat(moves_left)
def set_networkformat(self, net):
self.pb.format.network_format.network = net
def set_policyformat(self, policy):
self.pb.format.network_format.policy = policy
def set_valueformat(self, value):
self.pb.format.network_format.value = value
# OutputFormat is for search to know which kind of value the net returns.
if value == pb.NetworkFormat.VALUE_WDL:
self.pb.format.network_format.output = pb.NetworkFormat.OUTPUT_WDL
else:
self.pb.format.network_format.output = pb.NetworkFormat.OUTPUT_CLASSICAL
def set_movesleftformat(self, moves_left):
self.pb.format.network_format.moves_left = moves_left
def set_input(self, input_format):
self.pb.format.network_format.input = input_format
if input_format == pb.NetworkFormat.INPUT_112_WITH_CANONICALIZATION_V2 or input_format == pb.NetworkFormat.INPUT_112_WITH_CANONICALIZATION_V2_ARMAGEDDON:
self.pb.min_version.minor = LC0_MINOR_WITH_INPUT_TYPE_5
elif input_format >= pb.NetworkFormat.INPUT_112_WITH_CANONICALIZATION_HECTOPLIES:
self.pb.min_version.minor = LC0_MINOR_WITH_INPUT_TYPE_4
# Input type 2 was available before 3, but it was buggy, so also limit it to same version as 3.
elif input_format != pb.NetworkFormat.INPUT_CLASSICAL_112_PLANE:
self.pb.min_version.minor = LC0_MINOR_WITH_INPUT_TYPE_3
def get_weight_amounts(self):
value_weights = 8
policy_weights = 6
head_weights = value_weights + policy_weights
if self.pb.format.network_format.network == pb.NetworkFormat.NETWORK_SE_WITH_HEADFORMAT:
# Batch norm gammas in head convolutions.
head_weights += 2
if self.pb.format.network_format.network == pb.NetworkFormat.NETWORK_SE_WITH_HEADFORMAT:
return {"input": 5, "residual": 14, "head": head_weights}
else:
return {"input": 4, "residual": 8, "head": head_weights}
def fill_layer_v2(self, layer, params):
"""Normalize and populate 16bit layer in protobuf"""
params = params.flatten().astype(np.float32)
layer.min_val = 0 if len(params) == 1 else float(np.min(params))
layer.max_val = 1 if len(params) == 1 and np.max(
params) == 0 else float(np.max(params))
if layer.max_val == layer.min_val:
# Avoid division by zero if max == min.
params = (params - layer.min_val)
else:
params = (params - layer.min_val) / (layer.max_val - layer.min_val)
params *= 0xffff
params = np.round(params)
layer.params = params.astype(np.uint16).tobytes()
def fill_layer(self, layer, weights):
"""Normalize and populate 16bit layer in protobuf"""
params = np.array(weights.pop(), dtype=np.float32)
layer.min_val = 0 if len(params) == 1 else float(np.min(params))
layer.max_val = 1 if len(params) == 1 and np.max(
params) == 0 else float(np.max(params))
if layer.max_val == layer.min_val:
# Avoid division by zero if max == min.
params = (params - layer.min_val)
else:
params = (params - layer.min_val) / (layer.max_val - layer.min_val)
params *= 0xffff
params = np.round(params)
layer.params = params.astype(np.uint16).tobytes()
def fill_conv_block(self, convblock, weights, gammas):
"""Normalize and populate 16bit convblock in protobuf"""
if gammas:
self.fill_layer(convblock.bn_stddivs, weights)
self.fill_layer(convblock.bn_means, weights)
self.fill_layer(convblock.bn_betas, weights)
self.fill_layer(convblock.bn_gammas, weights)
self.fill_layer(convblock.weights, weights)
else:
self.fill_layer(convblock.bn_stddivs, weights)
self.fill_layer(convblock.bn_means, weights)
self.fill_layer(convblock.biases, weights)
self.fill_layer(convblock.weights, weights)
def fill_plain_conv(self, convblock, weights):
"""Normalize and populate 16bit convblock in protobuf"""
self.fill_layer(convblock.biases, weights)
self.fill_layer(convblock.weights, weights)
def fill_se_unit(self, se_unit, weights):
self.fill_layer(se_unit.b2, weights)
self.fill_layer(se_unit.w2, weights)
self.fill_layer(se_unit.b1, weights)
self.fill_layer(se_unit.w1, weights)
def denorm_layer_v2(self, layer):
"""Denormalize a layer from protobuf"""
params = np.frombuffer(layer.params, np.uint16).astype(np.float32)
params /= 0xffff
return params * (layer.max_val - layer.min_val) + layer.min_val
def denorm_layer(self, layer, weights):
weights.insert(0, self.denorm_layer_v2(layer))
def denorm_conv_block(self, convblock, weights):
"""Denormalize a convblock from protobuf"""
se = self.pb.format.network_format.network == pb.NetworkFormat.NETWORK_SE_WITH_HEADFORMAT
if se:
self.denorm_layer(convblock.bn_stddivs, weights)
self.denorm_layer(convblock.bn_means, weights)
self.denorm_layer(convblock.bn_betas, weights)
self.denorm_layer(convblock.bn_gammas, weights)
self.denorm_layer(convblock.weights, weights)
else:
self.denorm_layer(convblock.bn_stddivs, weights)
self.denorm_layer(convblock.bn_means, weights)
self.denorm_layer(convblock.biases, weights)
self.denorm_layer(convblock.weights, weights)
def denorm_plain_conv(self, convblock, weights):
"""Denormalize a plain convolution from protobuf"""
self.denorm_layer(convblock.biases, weights)
self.denorm_layer(convblock.weights, weights)
def denorm_se_unit(self, convblock, weights):
"""Denormalize SE-unit from protobuf"""
se = self.pb.format.network_format.network == pb.NetworkFormat.NETWORK_SE_WITH_HEADFORMAT
assert se
self.denorm_layer(convblock.b2, weights)
self.denorm_layer(convblock.w2, weights)
self.denorm_layer(convblock.b1, weights)
self.denorm_layer(convblock.w1, weights)
def save_txt(self, filename):
"""Save weights as txt file"""
weights = self.get_weights()
if len(filename.split('.')) == 1:
filename += ".txt.gz"
# Legacy .txt files are version 2, SE is version 3.
version = 2
if self.pb.format.network_format.network == pb.NetworkFormat.NETWORK_SE_WITH_HEADFORMAT:
version = 3
if self.pb.format.network_format.policy == pb.NetworkFormat.POLICY_CONVOLUTION:
version = 4
with gzip.open(filename, 'wb') as f:
version = "{}\n".format(version).encode('ascii')
f.write(version)
for row in weights:
f.write(
(" ".join(map(str, row.tolist())) + "\n").encode('ascii'))
size = os.path.getsize(filename) / 1024**2
print("saved as '{}' {}M".format(filename, round(size, 2)))
def save_proto(self, filename):
"""Save weights gzipped protobuf file"""
if len(filename.split('.')) == 1:
filename += ".pb.gz"
with gzip.open(filename, 'wb') as f:
data = self.pb.SerializeToString()
f.write(data)
size = os.path.getsize(filename) / 1024**2
print("Weights saved as '{}' {}M".format(filename, round(size, 2)))
def tf_name_to_pb_name(self, name):
"""Given Tensorflow variable name returns the protobuf name and index
of residual block if weight belong in a residual block."""
def convblock_to_bp(w):
w = w.split(':')[0]
d = {
'kernel': 'weights',
'gamma': 'bn_gammas',
'beta': 'bn_betas',
'moving_mean': 'bn_means',
'moving_variance': 'bn_stddivs',
'bias': 'biases'
}
return d[w]
def se_to_bp(l, w):
if l == 'dense1':
n = 1
elif l == 'dense2':
n = 2
else:
raise ValueError('Unable to decode SE-weight {}/{}'.format(
l, w))
w = w.split(':')[0]
d = {'kernel': 'w', 'bias': 'b'}
return d[w] + str(n)
def value_to_bp(l, w):
if l == 'dense1':
n = 1
elif l == 'dense2':
n = 2
else:
raise ValueError('Unable to decode value weight {}/{}'.format(
l, w))
w = w.split(':')[0]
d = {'kernel': 'ip{}_val_w', 'bias': 'ip{}_val_b'}
return d[w].format(n)
def policy_to_bp(w):
w = w.split(':')[0]
d = {'kernel': 'ip_pol_w', 'bias': 'ip_pol_b'}
return d[w]
def moves_left_to_bp(l, w):
if l == 'dense1':
n = 1
elif l == 'dense2':
n = 2
else:
raise ValueError(
'Unable to decode moves_left weight {}/{}'.format(l, w))
w = w.split(':')[0]
d = {'kernel': 'ip{}_mov_w', 'bias': 'ip{}_mov_b'}
return d[w].format(n)
layers = name.split('/')
base_layer = layers[0]
weights_name = layers[-1]
pb_name = None
block = None
if base_layer == 'input':
pb_name = 'input.' + convblock_to_bp(weights_name)
elif base_layer == 'policy1':
pb_name = 'policy1.' + convblock_to_bp(weights_name)
elif base_layer == 'policy':
if 'dense' in layers[1]:
pb_name = policy_to_bp(weights_name)
else:
pb_name = 'policy.' + convblock_to_bp(weights_name)
elif base_layer == 'value':
if 'dense' in layers[1]:
pb_name = value_to_bp(layers[1], weights_name)
else:
pb_name = 'value.' + convblock_to_bp(weights_name)
elif base_layer == 'moves_left':
if 'dense' in layers[1]:
pb_name = moves_left_to_bp(layers[1], weights_name)
else:
pb_name = 'moves_left.' + convblock_to_bp(weights_name)
elif base_layer.startswith('residual'):
block = int(base_layer.split('_')[1]) - 1 # 1 indexed
if layers[1] == '1':
pb_name = 'conv1.' + convblock_to_bp(weights_name)
elif layers[1] == '2':
pb_name = 'conv2.' + convblock_to_bp(weights_name)
elif layers[1] == 'se':
pb_name = 'se.' + se_to_bp(layers[-2], weights_name)
return (pb_name, block)
def get_weights_v2(self, names):
# `names` is a list of Tensorflow tensor names to get from the protobuf.
# Returns list of [Tensor name, Tensor weights].
tensors = {}
for tf_name in names:
name = tf_name
if 'stddev' in name:
# Get variance instead of stddev.
name = name.replace('stddev', 'variance')
if 'renorm' in name:
# Renorm variables are not populated.
continue
pb_name, block = self.tf_name_to_pb_name(name)
if pb_name is None:
raise ValueError(
"Don't know where to store weight in protobuf: {}".format(
name))
if block == None:
pb_weights = self.pb.weights
else:
pb_weights = self.pb.weights.residual[block]
w = self.denorm_layer_v2(nested_getattr(pb_weights, pb_name))
# Only variance is stored in the protobuf.
if 'stddev' in tf_name:
w = np.sqrt(w + 1e-5)
tensors[tf_name] = w
return tensors
def get_weights(self):
"""Returns the weights as floats per layer"""
se = self.pb.format.network_format.network == pb.NetworkFormat.NETWORK_SE_WITH_HEADFORMAT
if self.weights == []:
self.denorm_layer(self.pb.weights.ip2_val_b, self.weights)
self.denorm_layer(self.pb.weights.ip2_val_w, self.weights)
self.denorm_layer(self.pb.weights.ip1_val_b, self.weights)
self.denorm_layer(self.pb.weights.ip1_val_w, self.weights)
self.denorm_conv_block(self.pb.weights.value, self.weights)
if self.pb.format.network_format.policy == pb.NetworkFormat.POLICY_CONVOLUTION:
self.denorm_plain_conv(self.pb.weights.policy, self.weights)
self.denorm_conv_block(self.pb.weights.policy1, self.weights)
else:
self.denorm_layer(self.pb.weights.ip_pol_b, self.weights)
self.denorm_layer(self.pb.weights.ip_pol_w, self.weights)
self.denorm_conv_block(self.pb.weights.policy, self.weights)
for res in reversed(self.pb.weights.residual):
if se:
self.denorm_se_unit(res.se, self.weights)
self.denorm_conv_block(res.conv2, self.weights)
self.denorm_conv_block(res.conv1, self.weights)
self.denorm_conv_block(self.pb.weights.input, self.weights)
return self.weights
def filters(self):
layer = self.pb.weights.input.bn_means
params = np.frombuffer(layer.params, np.uint16).astype(np.float32)
return len(params)
def blocks(self):
return len(self.pb.weights.residual)
def print_stats(self):
print("Blocks: {}".format(self.blocks()))
print("Filters: {}".format(self.filters()))
print_pb_stats(self.pb)
print()
def parse_proto(self, filename):
with gzip.open(filename, 'rb') as f:
self.pb = self.pb.FromString(f.read())
# Populate policyFormat and valueFormat fields in old protobufs
# without these fields.
if self.pb.format.network_format.network == pb.NetworkFormat.NETWORK_SE:
self.set_networkformat(pb.NetworkFormat.NETWORK_SE_WITH_HEADFORMAT)
self.set_valueformat(pb.NetworkFormat.VALUE_CLASSICAL)
self.set_policyformat(pb.NetworkFormat.POLICY_CLASSICAL)
self.set_movesleftformat(pb.NetworkFormat.MOVES_LEFT_NONE)
elif self.pb.format.network_format.network == pb.NetworkFormat.NETWORK_CLASSICAL:
self.set_networkformat(
pb.NetworkFormat.NETWORK_CLASSICAL_WITH_HEADFORMAT)
self.set_valueformat(pb.NetworkFormat.VALUE_CLASSICAL)
self.set_policyformat(pb.NetworkFormat.POLICY_CLASSICAL)
self.set_movesleftformat(pb.NetworkFormat.MOVES_LEFT_NONE)
def parse_txt(self, filename):
weights = []
with open(filename, 'r') as f:
try:
version = int(f.readline()[0])
except:
raise ValueError('Unable to read version.')
for e, line in enumerate(f):
weights.append(list(map(float, line.split(' '))))
if version == 3:
self.set_networkformat(pb.NetworkFormat.NETWORK_SE_WITH_HEADFORMAT)
if version == 4:
self.set_networkformat(pb.NetworkFormat.NETWORK_SE_WITH_HEADFORMAT)
self.set_policyformat(pb.NetworkFormat.POLICY_CONVOLUTION)
self.fill_net(weights)
def fill_net_v2(self, all_weights):
# all_weights is array of [name of weight, numpy array of weights].
self.pb.format.weights_encoding = pb.Format.LINEAR16
has_renorm = any('renorm' in w[0] for w in all_weights)
weight_names = [w[0] for w in all_weights]
del self.pb.weights.residual[:]
for name, weights in all_weights:
layers = name.split('/')
weights_name = layers[-1]
if weights.ndim == 4:
# Convolution weights need a transpose
#
# TF
# [filter_height, filter_width, in_channels, out_channels]
#
# Leela
# [output, input, filter_size, filter_size]
weights = np.transpose(weights, axes=[3, 2, 0, 1])
elif weights.ndim == 2:
# Fully connected layers are [in, out] in TF
#
# [out, in] in Leela
#
weights = np.transpose(weights, axes=[1, 0])
if 'renorm' in name:
# Batch renorm has extra weights, but we don't know what to do with them.
continue
if has_renorm:
if 'variance:' in weights_name:
# Renorm has variance, but it is not the primary source of truth.
continue
# Renorm has moving stddev not variance, undo the transform to make it compatible.
if 'stddev:' in weights_name:
weights = np.square(weights) - 1e-5
name = name.replace('stddev', 'variance')
if name == 'input/conv2d/kernel:0' and self.pb.format.network_format.input < pb.NetworkFormat.INPUT_112_WITH_CANONICALIZATION_HECTOPLIES:
# 50 move rule is the 110th input, or 109 starting from 0.
weights[:, 109, :, :] /= 99
pb_name, block = self.tf_name_to_pb_name(name)
if pb_name is None:
raise ValueError(
"Don't know where to store weight in protobuf: {}".format(
name))
if block == None:
pb_weights = self.pb.weights
else:
assert block >= 0
while block >= len(self.pb.weights.residual):
self.pb.weights.residual.add()
pb_weights = self.pb.weights.residual[block]
self.fill_layer_v2(nested_getattr(pb_weights, pb_name), weights)
if pb_name.endswith('bn_betas'):
# Check if we need to add constant one gammas.
gamma_name = name.replace('beta', 'gamma')
if gamma_name in weight_names:
continue
gamma = np.ones(weights.shape)
pb_gamma = pb_name.replace('bn_betas', 'bn_gammas')
self.fill_layer_v2(nested_getattr(pb_weights, pb_gamma), gamma)
def fill_net(self, weights):
self.weights = []
# Batchnorm gammas in ConvBlock?
se = self.pb.format.network_format.network == pb.NetworkFormat.NETWORK_SE_WITH_HEADFORMAT
gammas = se
ws = self.get_weight_amounts()
blocks = len(weights) - (ws['input'] + ws['head'])
if blocks % ws['residual'] != 0:
raise ValueError("Inconsistent number of weights in the file")
blocks //= ws['residual']
self.pb.format.weights_encoding = pb.Format.LINEAR16
self.fill_layer(self.pb.weights.ip2_val_b, weights)
self.fill_layer(self.pb.weights.ip2_val_w, weights)
self.fill_layer(self.pb.weights.ip1_val_b, weights)
self.fill_layer(self.pb.weights.ip1_val_w, weights)
self.fill_conv_block(self.pb.weights.value, weights, gammas)
if self.pb.format.network_format.policy == pb.NetworkFormat.POLICY_CONVOLUTION:
self.fill_plain_conv(self.pb.weights.policy, weights)
self.fill_conv_block(self.pb.weights.policy1, weights, gammas)
else:
self.fill_layer(self.pb.weights.ip_pol_b, weights)
self.fill_layer(self.pb.weights.ip_pol_w, weights)
self.fill_conv_block(self.pb.weights.policy, weights, gammas)
del self.pb.weights.residual[:]
tower = []
for i in range(blocks):
tower.append(self.pb.weights.residual.add())
for res in reversed(tower):
if se:
self.fill_se_unit(res.se, weights)
self.fill_conv_block(res.conv2, weights, gammas)
self.fill_conv_block(res.conv1, weights, gammas)
self.fill_conv_block(self.pb.weights.input, weights, gammas)
def print_pb_stats(obj, parent=None):
for descriptor in obj.DESCRIPTOR.fields:
value = getattr(obj, descriptor.name)
if descriptor.name == "weights":
return
if descriptor.type == descriptor.TYPE_MESSAGE:
if descriptor.label == descriptor.LABEL_REPEATED:
map(print_pb_stats, value)
else:
print_pb_stats(value, obj)
elif descriptor.type == descriptor.TYPE_ENUM:
enum_name = descriptor.enum_type.values[value].name
print("%s: %s" % (descriptor.full_name, enum_name))
else:
print("%s: %s" % (descriptor.full_name, value))
def main(argv):
net = Net()
if argv.input.endswith(".txt"):
print('Found .txt network')
net.parse_txt(argv.input)
net.print_stats()
if argv.output == None:
argv.output = argv.input.replace('.txt', '.pb.gz')
assert argv.output.endswith('.pb.gz')
print('Writing output to: {}'.format(argv.output))
net.save_proto(argv.output)
elif argv.input.endswith(".pb.gz"):
print('Found .pb.gz network')
net.parse_proto(argv.input)
net.print_stats()
if argv.output == None:
argv.output = argv.input.replace('.pb.gz', '.txt.gz')
print('Writing output to: {}'.format(argv.output))
assert argv.output.endswith('.txt.gz')
if argv.output.endswith(".pb.gz"):
net.save_proto(argv.output)
else:
net.save_txt(argv.output)
else:
print('Unable to detect the network format. '
'Filename should end in ".txt" or ".pb.gz"')
if __name__ == "__main__":
argparser = argparse.ArgumentParser(
description='Convert network textfile to proto.')
argparser.add_argument('-i',
'--input',
type=str,
help='input network weight text file')
argparser.add_argument('-o',
'--output',
type=str,
help='output filepath without extension')
main(argparser.parse_args())