Skip to content

Latest commit

 

History

History
executable file
·
104 lines (60 loc) · 3 KB

File metadata and controls

executable file
·
104 lines (60 loc) · 3 KB

pdf-document-layout-analysis-async

Dependencies

Docker containers

A redis server is needed to use the service asynchronously. For that matter, it can be used the command make start-test that has a built-in redis server.

Containers with make start

Containers with make start-test

How to use it

  1. Send PDF to extract

    curl -X POST -F 'file=@/PATH/TO/PDF/pdf_name.pdf' localhost:5051/async_extraction/[tenant_name]

  2. Add extraction task

To add an extraction task, a message should be sent to a queue.

Python code:

queue = RedisSMQ(host=[redis host], port=[redis port], qname='segmentation_tasks', quiet=True)
message_json = '{"tenant": "tenant_name", "task": "segmentation", "params": {"filename": "pdf_file_name.pdf"}}'
message = queue.sendMessage(message_json).exceptions(False).execute()
  1. Get paragraphs

When the segmentation task is done, a message is placed in the results queue:

queue = RedisSMQ(host=[redis host], port=[redis port], qname='segmentation_results', quiet=True)
results_message = queue.receiveMessage().exceptions(False).execute()

# The message.message contains the following information:
# {"tenant": "tenant_name", 
# "task": "pdf_name.pdf", 
# "success": true, 
# "error_message": "", 
# "data_url": "http://localhost:5051/get_paragraphs/[tenant_name]/[pdf_name]"
# "file_url": "http://localhost:5051/get_xml/[tenant_name]/[pdf_name]"
# }


curl -X GET http://localhost:5051/get_paragraphs/[tenant_name]/[pdf_name]
curl -X GET http://localhost:5051/get_xml/[tenant_name]/[pdf_name]

or in python

requests.get(results_message.data_url)
requests.get(results_message.file_url)

HTTP server

The container HTTP server is coded using Python 3.9 and uses the FastApi web framework.

If the service is running, the end point definitions can be founded in the following url:

http://localhost:5051/docs

The end points code can be founded inside the file app.py.

The errors are reported to the file docker_volume/service.log, if the configuration is not changed (see Get service logs)

Queue processor

The container Queue processor is coded using Python 3.9, and it is on charge of the communication with redis.

The code can be founded in the file QueueProcessor.py and it uses the library RedisSMQ to interact with the redis queues.

Service configuration

Some parameters could be configured using environment variables. If a configuration is not provided, the defaults values are used.

Default parameters:

REDIS_HOST=redis_paragraphs
REDIS_PORT=6379
MONGO_HOST=mongo_paragraphs
MONGO_PORT=28017
SERVICE_HOST=http://127.0.0.1
SERVICE_PORT=5051

Set up environment for development

It works with Python 3.12 [install] (https://runnable.com/docker/getting-started/)

make install_venv

Execute tests

make test