Skip to content

Latest commit

 

History

History
205 lines (137 loc) · 8.32 KB

README.md

File metadata and controls

205 lines (137 loc) · 8.32 KB

Languages

The model used covers the following 23 languages:

Arabic, Chinese (simplified & traditional), Czech, Dutch, English, French, German, Greek, Hebrew, Hindi, Indonesian, Italian, Japanese, Korean, Persian, Polish, Portuguese, Romanian, Russian, Spanish, Turkish, Ukrainian, and Vietnamese.

How to use it

The translation service communicates exclusively through Redis queues. The service listens to the translation_tasks queue and writes the results to the translation_results queue.

Queues names:

  • translations_tasks
  • translations_results

Query Object

namespace: str
key: list[str]
text: str
language_from: str
languages_to: list[str]

Result object

namespace: str
key: list[str]
text: str
language_from: str
languages_to: list[str]
translations: list[Translation]
Translation object

Translation object

text: str
language: str
success: bool
error_message: str

Dummy translations

Use the dummy service to test the translation service

https://github.com/huridocs/dummy_extractor_services

Cloud times

Task Time
Create instance 10m
Start instance 1m 30s

Results

We are using the Helsinki-NLP/opus-100 (https://huggingface.co/datasets/Helsinki-NLP/opus-100) test set in Arabic, English, Spanish, French and Russian. The results are as follows:

Performance 2000 samples

Model Prompt Arabic-English English-Spanish English-French English-Russian
DeepL 38.00 - 35.73 26.94
aya-35b Prompt 2 31.89 - 32.57 22.91
aya-8b Prompt 2 27.73 - - 20
aya-8b Prompt 1 27.75 30.22 28.65 19.6
command-r Prompt 2 24.07 26.2 27.88 -
llama3-8b Prompt 1 19.4 29.38 27.03 15.73
gemma2:27b Prompt 2 - - 21.58 bad
mixtral Prompt 2 no ar - 18.15 no rus
llama3.1 Prompt 2 - 28.77 26.28 -

Performance 100 samples

Model Prompt Arabic-English English-Spanish English-French English-Russian
DeepL 33.11 - 36.05 24.64
llama3.1:70B Prompt 3 - - 32.65 -
aya-35b Prompt 2 30.75 - 31.48 20.06
glm4:9b Prompt 2 19.62 - 30.21 16.12
glm-BF16-64 Prompt 2 18.75 - 28.84 17.20
glm-BF16-128 Prompt 2 20.05 - 30.09 17.82
llama3.1-8B Prompt 2 10.52 25.37 27.53 14.04
llama3.1-8B Prompt 3 - - 26.57 -
llama3.2-3B Prompt 3 - - 19.70 -

GPU Performance Comparison

Setup Iteration 1 (seconds) Iteration 2 (seconds) Iteration 3 (seconds) Total Time for All Rounds (seconds)
1 x NVIDIA L4 (1 x 24 GB) 758.91 (including model loading time) 599.78 617.81 1976.5
2 x NVIDIA T4 (2x16 GB) 781.4 (including model loading time) 731.8 697.23 2210.42

(The scores have been calculated with fast-bleu https://pypi.org/project/fast-bleu/ using the average score for bigrams and trigrams)

Prompts legend:

  • Prompt 1: "Translate the below text to {language_to_name}, " "keep the layout, do not skip any text, do not output anything else besides translation:"

  • Prompt 2: """Please translate the following text into {language_to_name}. Follow these guidelines:
    1. Maintain the original layout and formatting.
    2. Translate all text accurately without omitting any part of the content.
    3. Preserve the tone and style of the original text.
    4. Do not include any additional comments, notes, or explanations in the output; provide only the translated text.

Here is the text to be translated: text """

  • Prompt 3: """Please translate the following text into {language_to_name}. Follow these guidelines:
  1. Maintain the original layout and formatting.
  2. Translate all text accurately without omitting any part of the content.
  3. Preserve the tone and style of the original text.
  4. Do not include any additional comments, notes, or explanations in the output; provide only the translated text.
  5. Only translate the text between and. Do not output any other text or character.

Here is the text to be translated: text"""

Speed

Model 1 sentence
DeepL 0.4s
llama3-8b 0.86s
aya-8b 0.925s
aya-35b 3.3s
gemma2:27b 1.4s
mixtral 2.5s
glm4:9b 0.4s

BLEU Score

BLEU SCORE INTERPRETATION
< 10 Almost useless
10 - 19 Hard to get the gist
20 - 29 The gist is clear, but has significant errors
30 - 40 Understandable to good translations
40 - 50 High quality translations
50 - 60 Very high quality, adequate, and fluent translations
> 60 Quality often better than human

docker-translation-service

ollama serve ollama run aya:35b

systemctl stop ollama sudo service ollama stop

sudo kill -9 $(ps aux | grep 'ollama' | awk '{print $2}') sudo kill -9 pid

root@debian:# find /usr/share/ollama/.ollama/models/ -type f -exec chown ollama:ollama {} ; root@debian:# find /usr/share/ollama/.ollama/models/ -type d -exec chown ollama:ollama {} ; root@debian:# find /usr/share/ollama/.ollama/models/ -type f -exec chmod 644 {} ; root@debian:# find /usr/share/ollama/.ollama/models/ -type d -exec chmod 755 {} ;

https://hub.docker.com/r/ollama/ollama

docker run -d --gpus=all -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama

or

docker start ollama

docker exec -it ollama ollama run aya:35b docker exec -it ollama-translations ollama pull aya:35b docker exec -it ollama-translations ollama pull qwen:0.5b-text-v1.5-q2_K

curl http://localhost:11434/api/generate -d '{ "model": "aya:35b", "prompt": "What is water made of?" }' curl http://localhost:7869/api/generate -d '{ "model": "tinyllama", "prompt": "What is water made of?" }' curl http://localhost:8080/api/generate -d '{ "model": "glm-4-9b-chat", "prompt": "What is water made of?" }'

Deployment

  • For development purposes we can use dummy_extractor_services
    • If the language is "error" then the translation server returns an error
    • The other languages are returned with the text [translation for {language}] and the input text without been translated
  • Run it with "make docker" for having a docker container running mocking the translation service
  • The deployment script is found in the "deployment repo" branch translations-service
  • We have to set up a Google cloud server for this to run using GPUs
    • or use a 24Gb ram server
  • For deployment, we need the following environment variables: PROJECT_ID, INSTANCE_ID, ZONE, CREDENTIALS
  • CREDENTIALS are found on the file /home/[user]/.config/gcloud/application_default_credentials.json
  • The rest of variables are found on the Google Cloud Console