forked from FederatedAI/FATE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfedpass_nn_launcher.py
211 lines (170 loc) · 6.39 KB
/
fedpass_nn_launcher.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import torch as t
from fate.arch import Context
from fate.ml.nn.hetero.hetero_nn import HeteroNNTrainerGuest, HeteroNNTrainerHost, TrainingArguments
from fate.ml.nn.model_zoo.hetero_nn_model import FedPassArgument, TopModelStrategyArguments
from fate.ml.nn.model_zoo.hetero_nn_model import HeteroNNModelGuest, HeteroNNModelHost
def train(ctx: Context,
dataset=None,
model=None,
optimizer=None,
loss_func=None,
args: TrainingArguments = None,
):
if ctx.is_on_guest:
trainer = HeteroNNTrainerGuest(ctx=ctx,
model=model,
train_set=dataset,
optimizer=optimizer,
loss_fn=loss_func,
training_args=args
)
else:
trainer = HeteroNNTrainerHost(ctx=ctx,
model=model,
train_set=dataset,
optimizer=optimizer,
training_args=args
)
trainer.train()
return trainer
def predict(trainer, dataset):
return trainer.predict(dataset)
def get_setting(ctx):
import torchvision
# define model
from torch import nn
from torch.nn import init
class ConvBlock(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, bias=True, norm_type=None,
relu=False):
super().__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, bias=bias)
self.norm_type = norm_type
if self.norm_type:
if self.norm_type == 'bn':
self.bn = nn.BatchNorm2d(out_channels)
elif self.norm_type == 'gn':
self.bn = nn.GroupNorm(out_channels // 16, out_channels)
elif self.norm_type == 'in':
self.bn = nn.InstanceNorm2d(out_channels)
else:
raise ValueError("Wrong norm_type")
else:
self.bn = None
if relu:
self.relu = nn.ReLU(inplace=True)
else:
self.relu = None
self.reset_parameters()
def reset_parameters(self):
init.kaiming_normal_(self.conv.weight, mode='fan_out', nonlinearity='relu')
def forward(self, x, scales=None, biases=None):
x = self.conv(x)
if self.norm_type is not None:
x = self.bn(x)
if scales is not None and biases is not None:
x = scales[-1] * x + biases[-1]
if self.relu is not None:
x = self.relu(x)
return x
# host top model
class LeNetBottom(nn.Module):
def __init__(self):
super(LeNetBottom, self).__init__()
self.layer0 = nn.Sequential(
ConvBlock(1, 8, kernel_size=5),
nn.ReLU(inplace=True),
nn.MaxPool2d(2, 2)
)
def forward(self, x):
x = self.layer0(x)
return x
# guest top model
class LeNetTop(nn.Module):
def __init__(self, out_feat=84):
super(LeNetTop, self).__init__()
self.pool = nn.MaxPool2d(2, 2)
self.fc1 = nn.Linear(16 * 4 * 4, 120)
self.fc1act = nn.ReLU(inplace=True)
self.fc2 = nn.Linear(120, 84)
self.fc2act = nn.ReLU(inplace=True)
self.fc3 = nn.Linear(84, out_feat)
def forward(self, x_a):
x = x_a
x = self.pool(x)
x = x.view(x.size(0), -1)
x = self.fc1(x)
x = self.fc1act(x)
x = self.fc2(x)
x = self.fc2act(x)
x = self.fc3(x)
return x
# fed simulate tool
from torch.utils.data import Dataset
class NoFeatureDataset(Dataset):
def __init__(self, ds):
self.ds = ds
def __len__(self):
return len(self.ds)
def __getitem__(self, item):
return [self.ds[item][1]]
class NoLabelDataset(Dataset):
def __init__(self, ds):
self.ds = ds
def __len__(self):
return len(self.ds)
def __getitem__(self, item):
return [self.ds[item][0]]
# prepare mnist data
train_data = torchvision.datasets.MNIST(root='./',
train=True, download=True, transform=torchvision.transforms.ToTensor())
if ctx.is_on_guest:
model = HeteroNNModelGuest(
top_model=LeNetTop(),
top_arg=TopModelStrategyArguments(
protect_strategy='fedpass',
fed_pass_arg=FedPassArgument(
layer_type='linear',
in_channels_or_features=84,
hidden_features=64,
out_channels_or_features=10,
passport_mode='multi',
activation='relu',
num_passport=1000,
low=-10
)
)
)
optimizer = t.optim.Adam(model.parameters(), lr=0.01)
loss = t.nn.CrossEntropyLoss()
ds = NoFeatureDataset(train_data)
else:
model = HeteroNNModelHost(
bottom_model=LeNetBottom(),
agglayer_arg=FedPassArgument(
layer_type='conv',
in_channels_or_features=8,
out_channels_or_features=16,
kernel_size=(5, 5),
stride=(1, 1),
passport_mode='multi',
activation='relu',
num_passport=1000
)
)
optimizer = t.optim.Adam(model.parameters(), lr=0.01)
loss = None
ds = NoLabelDataset(train_data)
args = TrainingArguments(
num_train_epochs=3,
per_device_train_batch_size=256,
disable_tqdm=False
)
return ds, model, optimizer, loss, args
def run(ctx):
ds, model, optimizer, loss, args = get_setting(ctx)
trainer = train(ctx, ds, model, optimizer, loss, args)
pred = predict(trainer, ds)
if __name__ == '__main__':
from fate.arch.launchers.multiprocess_launcher import launch
launch(run)