-
Notifications
You must be signed in to change notification settings - Fork 160
/
Copy pathX2bolt.cpp
180 lines (167 loc) · 8.12 KB
/
X2bolt.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
// Copyright (C) 2019. Huawei Technologies Co., Ltd. All rights reserved.
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
// WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#include <getopt.h>
#include "online_conversion.h"
#include "model_print.h"
#include "model_common.h"
#include <iostream>
#include <algorithm>
#include "file.h"
void print_X2bolt_usage()
{
std::cout << "X2bolt(version:" << sg_boltVersion
<< ") usage: (<> must be filled in with exact value; [] is optional.)\n"
"Parameter description:\n"
"1. -d <modelDirectory>: The directory where your model is stored.\n"
"2. -m <modelFileName>: The name of your model file without file suffix. "
"Tips: If your model is trained from caffe, please ensure the model file name of "
"prototxt and caffemodel are the same, otherwise error occurs.\n"
"3. -i [inferencePrecision]: The inference precision. Currently, you can only "
"choose one of {FP32, FP16, PTQ, BNN}. PTQ produces the input for "
"int8 post_training_quantization tool. BNN supports 1-bit computation of convolution and "
"FP16 computation of other operators on ARMv8.2 machines. \n"
"4. -r [removeOperatorNum]: The number of preprocession operator in onnx model. default: 0.\n"
"5. -t : Generate training model for on-device finetuning.\n"
"6. -I : To modify input names of the model. You need to list all input names seperated with ','.\n"
"7. -O : To modify output names of the model. You need to list all output names seperated with ','.\n"
"8. -v : X2bolt version information.\n"
"9. -V : Bolt Model detail information.\n"
"10. -B : Bolt Model binary information.\n"
"11. -h : help information.\n"
"Example: ./X2bolt -d /local/models/ -m resnet50 -i FP16\n"
"If model conversion is successful, you can find the resnet50_f16.bolt file in "
"/local/models. Otherwise, you should check the usage Intro above.\n"
<< std::endl;
}
void print_version()
{
std::cout << "Current mdoel converter version is : " << sg_boltVersion << std::endl;
}
int main(int argc, char *argv[])
{
std::cout << "\nEnter './X2bolt --help' to get more usage information.\nEnter './X2bolt "
"--version' to get the version.\n\n";
std::vector<std::string> lineArgs(argv, argv + argc);
for (std::string arg : lineArgs) {
if (arg == "--help" || arg == "-help" || arg == "--h" || arg == "-h") {
print_X2bolt_usage();
return -1;
} else if (arg == "--version" || arg == "-version" || arg == "--v" || arg == "-v") {
print_version();
return -1;
}
}
std::string storagePath = ".";
std::string modelFileName;
std::string inferPrecision = "FP32";
I32 removeProcessOpsNum = 0;
bool printModel = false;
bool printBinaryModel = false;
bool trainMode = false;
std::string modifiedInputs = "";
std::string modifiedOutputs = "";
int option;
const char *optionstring = "d:m:i:r:VBvtI:O:";
while ((option = getopt(argc, argv, optionstring)) != -1) {
switch (option) {
case 'd':
storagePath = optarg;
std::cout << "option is -d <modelDirectory>, value is: " << storagePath << std::endl;
break;
case 'm':
modelFileName = optarg;
std::cout << "option is -m <modelFileName>, value is: " << modelFileName
<< std::endl;
break;
case 'i':
inferPrecision = optarg;
std::cout << "option is -i <inferencePrecision>, value is: " << inferPrecision
<< std::endl;
break;
case 'r':
removeProcessOpsNum = atoi(optarg);
std::cout << "option is -r [removeOperatorNum], value is: " << removeProcessOpsNum
<< std::endl;
break;
case 'V':
printModel = true;
break;
case 'b':
printBinaryModel = true;
break;
case 't':
trainMode = true;
break;
case 'I':
modifiedInputs = optarg;
break;
case 'O':
modifiedOutputs = optarg;
break;
default:
std::cerr << "Input option gets error. Please check the params meticulously.\n"
<< std::endl;
print_X2bolt_usage();
return 1;
}
}
if (modelFileName == "") {
std::cerr << "Please use -m <modelFileName> option to give an valid model file name "
"without file suffix."
<< std::endl;
return 1;
}
transform(inferPrecision.begin(), inferPrecision.end(), inferPrecision.begin(), toupper);
void *onlineModel = OnlineModelConversion(storagePath.c_str(), modelFileName.c_str(),
inferPrecision.c_str(), removeProcessOpsNum, trainMode);
ModelSpec *ms = (ModelSpec *)onlineModel;
std::string modelStorePath = storagePath + "/" + modelFileName;
if (trainMode) {
modelStorePath += std::string("_train.bolt");
} else if (inferPrecision.compare(std::string("PTQ")) == 0) {
modelStorePath += std::string("_ptq_input.bolt");
} else if (inferPrecision.compare(std::string("BNN")) == 0) {
modelStorePath += std::string("_f16_b.bolt");
} else if (inferPrecision.compare(std::string("FP16")) == 0) {
modelStorePath += std::string("_f16.bolt");
} else if (inferPrecision.compare(std::string("FP32")) == 0) {
modelStorePath += std::string("_f32.bolt");
} else {
std::cerr << "Unknown converter data precision: " << inferPrecision << std::endl;
return 1;
}
// modified input names and output names
modify_ms_inputs_and_outputs(ms, modifiedInputs, modifiedOutputs);
UNI_INFO_LOG("Write bolt model to %s.\n", modelStorePath.c_str());
CHECK_STATUS(serialize_model_to_file(ms, modelStorePath.c_str()));
OnlineModelReclaim(onlineModel);
if (printModel) {
ModelSpec resultMs;
CHECK_STATUS(deserialize_model_from_file(modelStorePath.c_str(), &resultMs, ms->dt));
print_header(resultMs);
print_operator_tensor_relationship(resultMs);
print_weights(resultMs);
CHECK_STATUS(mt_destroy_model(&resultMs));
}
if (printBinaryModel) {
U8 *binary = NULL;
size_t binary_len = 0;
CHECK_STATUS(load_binary(modelStorePath.c_str(), (void **)&binary, &binary_len));
std::string line = "const unsigned int model_len = " + std::to_string(binary_len) + ";\n";
line += "const char model[] = " + hex_array(binary, binary_len) + ";\n";
if (binary != NULL) {
free(binary);
}
std::cout << line << std::endl;
}
std::cout << "Model Conversion Succeeded!" << std::endl;
// UNI_MEM_STATISTICS();
return 0;
}