xrydbh 2022-02-04
library(WGCNA)
library(tidyverse)
library(heatmap3)
library(openxlsx)
# Set path
# If script is running separately move up one step with setwd(".."). Only needed once (for first script run separately).
###############################
# Set parameters
###############################
technology_platforms <- c("pea","ms")
RCutoff = .85
MCutheight = .1
PowerUpper = 20
minModuleSize = 20
softPower_ms = 5
softPower_pea = 10
exportForVisant=T
allowWGCNAThreads()
## Allowing multi-threading with up to 8 threads.
###############################
# Get abundances
loaded_abundances <- load("./RData/003_ab_list.RData")
loaded_abundances
## [1] "ab_list"
##################### Define datExpr and allDat (names used throughout WGCNA tutorial on input dataframes)
for(technology_platform in technology_platforms){
out_dir <- paste("./out_r/WGCNA/",technology_platform,"_unip",sep="")
dir.create(out_dir, showWarnings = F, recursive = T)
tech_plf <- paste(technology_platform,"_meta",sep="")
if (technology_platform=="ms"){
datExpr <- ab_list[["dat_meta"]][[tech_plf]] %>%
dplyr::select(-c("UniprotID","Gene.symbol","Gene.synonyms","Numb_NA_High","Numb_NA_Low","No.peptides","PSMs","Unique.Peptides","MW.kDa")) %>%
t() %>%
as_tibble() %>%
mutate_all(list(~as.numeric(.))) %>%
as.data.frame()
names(datExpr) <- ab_list[["dat_meta"]][[tech_plf]] %>%
pluck("UniprotID")
allDat <- ab_list[["dat_meta"]][[tech_plf]] %>%
dplyr::select(-c("Gene.symbol","Gene.synonyms","Numb_NA_High","Numb_NA_Low","No.peptides","PSMs","Unique.Peptides","MW.kDa")) %>%
mutate_at(vars(-one_of(c("UniprotID"))),list(~as.numeric(.)))
} else if(technology_platform=="pea"){
datExpr <- ab_list[["dat_meta"]][[tech_plf]] %>%
dplyr::select(-c("UniprotID","Gene.symbol","OlinkID","Numb_NA_High","Numb_NA_Low","Panel")) %>%
t() %>%
as_tibble() %>%
mutate_all(list(~as.numeric(.))) %>%
as.data.frame()
names(datExpr) <- ab_list[["dat_meta"]][[tech_plf]] %>%
pluck("UniprotID")
allDat <- ab_list[["dat_meta"]][[tech_plf]] %>%
dplyr::select(-c("Gene.symbol","OlinkID","Numb_NA_High","Numb_NA_Low","Panel")) %>%
mutate_at(vars(-one_of(c("UniprotID"))),list(~as.numeric(.)))
}
prot_count <- allDat %>%
pluck("UniprotID") %>%
unique() %>%
length()
# Create a grouping vector
Group <- allDat %>%
dplyr::select(-1) %>%
names() %>%
str_remove("_") %>% str_remove("[:digit:]")
######################
#########################
# Build WGCNA network
#########################
# Choose a set of soft-thresholding powers
powers = c(c(1:10), seq(from = 12, to=PowerUpper, by=2))
# Call the network topology analysis function
sft = pickSoftThreshold(datExpr, powerVector = powers, RsquaredCut = RCutoff, verbose = 5)
# Plot the results to pdf :
png(paste("./out_r/WGCNA/",technology_platform,"_unip/ScaleFreeTopology_",technology_platform,".png",sep=""), 3000,2000,res=300)
par(mfrow = c(1,2));
cex1 = 0.9;
# Scale-free topology fit index as a function of the soft-thresholding power
plot(sft$fitIndices[,1], -sign(sft$fitIndices[,3])*sft$fitIndices[,2],
xlab="Soft Threshold (power)",ylab="Scale Free Topology Model Fit,signed R^2",type="n",
main = paste("Scale independence"));
text(sft$fitIndices[,1], -sign(sft$fitIndices[,3])*sft$fitIndices[,2],
labels=powers,cex=cex1,col="red");
# this line corresponds to using an R^2 cut-off of h
h = 0.85
abline(h=h,col="red")
# Mean connectivity as a function of the soft-thresholding power
plot(sft$fitIndices[,1], sft$fitIndices[,5],
xlab="Soft Threshold (power)",ylab="Mean Connectivity", type="n",
main = paste("Mean connectivity"))
text(sft$fitIndices[,1], sft$fitIndices[,5], labels=powers, cex=cex1,col="red")
dev.off()
# Get the soft power
if(technology_platform=="ms"){
softPower = softPower_ms# sft$powerEstimate;
}else if(technology_platform=="pea"){
softPower = softPower_pea# sft$powerEstimate;
}
# Build the adjacency table - use "signed" for proteomics data
adjacency = adjacency(datExpr, power = softPower, type="signed");
# Turn adjacency into topological overlap distance
TOM = TOMsimilarity(adjacency)
dissTOM = 1-TOM
# Clustering using TOM-based dissimilarity
proTree = hclust(as.dist(dissTOM), method = "average");
# Module identification using dynamic tree cut
dynamicMods = cutreeDynamic(dendro = proTree, distM = dissTOM,
deepSplit = 2, pamRespectsDendro = FALSE,
minClusterSize = minModuleSize);
print("Dynamic tree cut results:")
print(table(dynamicMods))
# Convert numeric labels into colors
dynamicColors = labels2colors(dynamicMods)
table(dynamicColors)
# Plot the dendrogram and colors underneath
sizeGrWindow(8,6)
png(paste("./out_r/WGCNA/",technology_platform,"_unip/DendroColor_and_colors_underneath.png",sep=""), 2000, 2000, res=300)
plotDendroAndColors(proTree, dynamicColors, "Dynamic Tree Cut",
dendroLabels = FALSE, hang = 0.03,
addGuide = TRUE, guideHang = 0.05,
main = "Protein dendrogram and module colors")
dev.off()
# Merge clusters
mergedClust = mergeCloseModules(datExpr, dynamicColors, cutHeight = MCutheight, verbose = 3)
mergedColors = mergedClust$colors;
mergedMEs = mergedClust$newMEs;
#############################################
# Calculate and plot module eigenproteins
# - Dendrogram
# - Heatmap
# - Boxplot
# - KME
#############################################
# Rename to moduleColors
moduleColors = mergedColors
print("Modules after merging:")
print(table(moduleColors))
# Plot dendrogram
png(paste("./out_r/WGCNA/",technology_platform,"_unip/DendroColorMergedClust.png",sep=""), 2000, 2000, res=300)
plotDendroAndColors(proTree, cbind(dynamicColors, mergedColors),
c("Dynamic Tree Cut", "Merged dynamic"),
dendroLabels = FALSE, hang = 0.03,
addGuide = TRUE, guideHang = 0.05)
dev.off()
# Get the module eigenproteins
MEs = mergedMEs
rownames(MEs) = rownames(datExpr)
# reorder MEs by color names of modules
MEs = MEs[,order(colnames(MEs))]
# Plot module profiles with eigenproteins overlaid
WGCNAClusterID = moduleColors
############################
#Plogo2 functions
#############################
plotErrorBarsLines <- function (v, barSizes, lines, labels = NULL, col = "blue",
ylim = c(min(lines), max(lines)), ...)
{
barSizes[is.na(barSizes)] <- 0
topBars <- v + 0.5 * barSizes
bottomBars <- v - 0.5 * barSizes
N <- length(v)
if (is.null(labels))
labels <- 1:N
ylims <- c(min(bottomBars, ylim[1], min(lines)), max(topBars,
ylim[2], max(lines)))
par(pch = 19, xaxt = "n")
plot(as.numeric(labels), v, ylim = ylims, col = col, type = "b",
lwd = 3, ...)
par(xaxt = "s")
for (i in 1:N) {
lines(c(i, i), c(topBars[i], bottomBars[i]))
}
for (i in 1:ncol(lines)) {
lines(as.numeric(labels), lines[, i], lwd = 0.5, lty = "dotted",
col = "gray")
}
}
plotClusterProfileWGCNA <- function(cluster.data, moduleColors, group, MEs=NULL,
ylab="Abundance",
file="ClusterPatterns.png", ...) {
gp = group
noClusters <- nlevels(as.factor(moduleColors))
r.temp <- aggregate(t(cluster.data), by=list(gp=gp), FUN=mean)
ag.sample <- r.temp[,-1]
rownames(ag.sample) <- r.temp[,1]
ag.genes <- aggregate(t(ag.sample), by=list(Cluster=moduleColors), FUN=mean)
ag.sd <- aggregate(t(ag.sample), by=list(Cluster=moduleColors), FUN=sd)
ag.matrix <- as.matrix(ag.genes[,-1])
if(!is.null(MEs) ) {
r.temp <- aggregate(MEs, by=list(gp=gp), FUN=mean)
ag.matrix <- t(r.temp[,-1])
colnames(ag.matrix) <- r.temp[,1]
}
ag.counts <- summary(as.factor(moduleColors))
ag.bars <- as.matrix(ag.sd[,-1])
fScale = max(8,noClusters)/8
png(file, 2000, 3000*fScale, res=300)
par(bg=gray(.95), fg=gray(0.3), mar= c(8, 6, 2, 1) + 0.1, col.main="black", col.sub="black", col.lab="black", col.axis="black")
layout(matrix(1:(ceiling(noClusters/2)*2), ncol=2, byrow=TRUE))
NSig <- noClusters
cols = levels(as.factor(moduleColors) )
for(i in 1:NSig) {
gname <- paste(levels(as.factor(moduleColors))[i], "(", ag.counts[i], "proteins )")
lines <- ag.sample[, moduleColors==levels(as.factor(moduleColors))[i], drop=FALSE]
plotErrorBarsLines(ag.matrix[i,], 2*ag.bars[i,], lines,
labels=1:ncol(ag.matrix),
col=cols[i], main=gname, # bgcol="gray", split=split,
ylab=ylab, xlab="",
ylim=c(min(ag.matrix), max(ag.matrix)), ...)
axis(1,at=1:ncol(ag.matrix), las=2, labels=colnames(ag.matrix), col="black", ...)
abline(h=0, lty="dotted")
}
dev.off()
}
########################
# Maybe need to filter her first with : t(datExpr) %>% as_tibble() %>% # na.omit()
t(datExpr) %>%
as_tibble()%>%
select_if(function(x) any(is.na(x))) %>%
summarise_each(funs(sum(is.na(.)))) -> t_datExpr_NA
if (dim(t_datExpr_NA)[2]==0){
#sum_NA <- sum(t_datExpr_NA[1,])
## plotClusterProfileWGCNA cannot handle missing values
#if (sum_NA == 0){
print(paste("./out_r/WGCNA/",technology_platform,"_unip/WGCNAClusterPattenAve.png",sep=""))
plotClusterProfileWGCNA(t(datExpr), WGCNAClusterID, Group, MEs= MEs,
ylab="Average log ratio", file=paste("./out_r/WGCNA/",technology_platform,"_unip/WGCNAClusterPattenME.png",sep=""),
cex.main=1.8, cex.lab=1.7, cex.axis=1.5)
dim(t(datExpr))
plotClusterProfileWGCNA(t(datExpr), WGCNAClusterID, Group,
ylab="Average log ratio", file=paste("./out_r/WGCNA/",technology_platform,"_unip/WGCNAClusterPattenAve.png",sep=""),
cex.main=1.8, cex.lab=1.7, cex.axis=1.5)
# }
}
###########################
# Module trait relationships
#####################
Group_numeric=c(rep(1,8),rep(0,8))
nGenes = ncol(datExpr);
stemcell.conc.groups <- as.data.frame(Group_numeric)
names(stemcell.conc.groups)="StemCellConc"
row.names(stemcell.conc.groups) <- row.names(datExpr)
nSamples = nrow(stemcell.conc.groups);
# Recalculate MEs with color labels
MEs0 = moduleEigengenes(datExpr, dynamicColors)$eigengenes
MEs1 = orderMEs(MEs0)
#moduleTraitCor is a df with correlations of eigengenes and traits
moduleTraitCor = cor(MEs1, stemcell.conc.groups, use = "p");
#moduleTraitCor = biserial.cor(MEs, clin_out)
#p-values of eigengene trait correlation
moduleTraitPvalue = corPvalueStudent(moduleTraitCor, nSamples)
# Will display correlations and their p-values
textMatrix = paste(signif(moduleTraitCor, 2), "\n(",
signif(moduleTraitPvalue, 1), ")", sep = "");
dim(textMatrix) = dim(moduleTraitCor)
par(mar = c(6, 10, 3, 3));
# Display the correlation values within a heatmap plot
pdf(paste("./out_r/WGCNA/",technology_platform,"_unip/Eigenprotein_stemCellGroup_correlation_heatmap.pdf",sep=""),
width=4,
height=4
)
par(mar = c(6, 10, 3, 3));
labeledHeatmap(Matrix = moduleTraitCor,
xLabels = names(stemcell.conc.groups),
yLabels = names(MEs1),
ySymbols = names(MEs1),
colorLabels = FALSE,
colors = greenWhiteRed(50),
textMatrix = textMatrix,
setStdMargins = FALSE,
cex.text = 0.7,
zlim = c(-1,1),
main = paste("Module-trait relationships"))
dev.off()
###############################################
# dendrogram and heatmap for eigenproteins
png(paste("./out_r/WGCNA/",technology_platform,"_unip/Dendrogram eigenproteins.png",sep=""), 2000,2000,res=300)
plotEigengeneNetworks(MEs, "Eigenprotein Network", marHeatmap = c(3,4,2,2), marDendro = c(3,4,2,5),
plotDendrograms = TRUE, xLabelsAngle = 90,heatmapColors=blueWhiteRed(50))
dev.off()
png(paste("./out_r/WGCNA/",technology_platform,"_unip/Heatmap eigenproteins.png",sep=""), 550,500,res=100)
heatmap3(t(MEs), #distfun = function(x) dist(x, method="euclidean"),
ColSideColors=rainbow(nlevels(as.factor(Group)))[as.factor(Group)],
method = "average",
main="Module eigenproteins")
legend("topleft", fill=rainbow(nlevels(as.factor(Group)))[1:nlevels(as.factor(Group))],
legend=levels(as.factor(Group)), cex=.6, xpd=TRUE, inset=-.1 )
dev.off()
# Network heatmap
# Transform dissTOM with a power to make moderately strong connections more visible in the heatmap
plotTOM = dissTOM^7;
# Set diagonal to NA for a nicer plot
diag(plotTOM) = NA;
png(paste("./out_r/WGCNA/",technology_platform,"_unip/Network heatmap.png",sep=""), 2000, 2000, res=300)
TOMplot(plotTOM, proTree, moduleColors, main = "Network heatmap plot, all proteins")
dev.off()
# Export networks for visulisation with VisANT - can take a while!
if(exportForVisant) {
fn_list_visAnt_input_TOM <- list()
fn_list_visAnt_input_ADJ <- list()
for(module in moduleColors) {
#module="brown"
# Select module probe
probes = names(datExpr)
inModule = (moduleColors==module);
modProbes = probes[inModule];
if (length(modProbes)>2){ ## halfdan added to avoid inclusion of grey module with only 1 protein
# Select the corresponding Topological Overlap
for(NmodTOM in 1:2) {
# NmodTOM=1
modTOM = TOM[inModule, inModule];
visFile = paste("./out_r/WGCNA/",technology_platform,"_unip/VisANTInput-TOM", module, ".txt", sep="")
fn_list_visAnt_input_TOM[[module]] <- visFile
if(NmodTOM == 2) {
modTOM = adjacency[inModule, inModule]
visFile = paste("./out_r/WGCNA/",technology_platform,"_unip/VisANTInput-ADJ", module, ".txt", sep="")
fn_list_visAnt_input_ADJ[[module]] <- visFile
}
dimnames(modTOM) = list(modProbes, modProbes)
# Export the network into an edge list file VisANT can read
vis = exportNetworkToVisANT(modTOM,
file = visFile,
weighted = TRUE,
threshold = 0
)
}
}
}
save(fn_list_visAnt_input_TOM,fn_list_visAnt_input_ADJ,file=paste("./out_r/WGCNA/",technology_platform,"_unip/full_paths_visAnt_input.RData",sep=""))
}
# Get KME - module membership - correlation between proteins and eigenproteins
kmes = signedKME(datExpr, MEs)
# rownames(datExpr)
# colnames(datExpr)
# separate results by modules, order by kME, hub proteins on top
dat.res = data.frame(allDat, moduleColors , kmes)
list.cluster.dat = lapply(levels(as.factor(moduleColors)),
function(x) {dtemp = dat.res[dat.res$moduleColors == x,];
dtemp[order(dtemp[,paste0('kME',x)==colnames(dtemp)], decreasing=TRUE),
-setdiff(grep("^kME", colnames(dtemp)), which(paste0('kME',x)==colnames(dtemp)))]} )
names(list.cluster.dat) = levels(as.factor(moduleColors))
# Boxplot for eigenproteins
ag.temp = aggregate(MEs, by=list(Group=Group), FUN=mean)
ag.eigengenes = t(ag.temp[,-1])
colnames(ag.eigengenes) = ag.temp[,1]
fScale = max(8,nlevels(as.factor(moduleColors)))/8
#MEs <- MEs[,-4]
png(paste("./out_r/WGCNA/",technology_platform,"_unip/Boxplot eigenproteins.png", sep=""), 2000, 3000*fScale, res=300)
par(mar= c(7, 4, 2, 1) + 0.1)
layout(matrix(1:(ceiling(nlevels(as.factor(moduleColors))/2)*2), ncol=2, byrow=TRUE))
cols = levels(as.factor(moduleColors))
for(ii in 1:ncol(MEs))
boxplot(MEs[,ii] ~ Group, las=2, col=cols[ii], ylab = "log ratio",
main=paste(colnames(MEs)[ii], table(moduleColors)[ii] ), cex.main=1.7, cex.lab=1.7, cex.axis=1.5 )
dev.off()
# Boxplot for top 6 hub proteins
# list.cluster.dat[["grey"]] <- NULL
for(ii in 1:length(list.cluster.dat)) {
png(paste0("./out_r/WGCNA/",technology_platform,"_unip/Boxplot hub proteins - ", names(list.cluster.dat)[ii], ".png"), 2000, 2500, res=300)
par(oma= c(5, 2, 2, 1) + 0.1)
## Check what is the max number of genes in subcluster/module
if (dim(list.cluster.dat[[ii]])[1]< 6){
numb_hub_prots_to_plot <- dim(list.cluster.dat[[ii]])[1]
} else{
numb_hub_prots_to_plot <- 6
}
## split plotting area
layout(matrix(1:6, ncol=2))
for(jj in 1:numb_hub_prots_to_plot){
x.0 <- list.cluster.dat[[ii]][jj,2:17]
x.1 <- sapply(x.0, as.numeric)
x.2 <- t(log(x.1)) %>% as.vector()
#x <- sapply(x, as.numeric
boxplot(x.2 ~ Group,
main=paste(list.cluster.dat[[ii]][jj,1],"\nkME=", round(list.cluster.dat[[ii]][jj,ncol(list.cluster.dat[[ii]])],2)),
col=rainbow(nlevels(as.factor(Group))), ylab="Log ratio", cex.main=1.5, las=2,cex.lab=1.2, )
}
dev.off()
}
# Output results
wb = createWorkbook()
addWorksheet(wb, "AllData")
writeData(wb, "AllData", dat.res)
# write modules only tabs
for(ii in 1:length(list.cluster.dat)) {
addWorksheet(wb, names(list.cluster.dat)[ii])
writeData(wb, names(list.cluster.dat)[ii], list.cluster.dat[[ii]])
}
saveWorkbook(wb, paste("./out_r/WGCNA/",technology_platform,"_unip/ResultsWGCNA.xlsx",sep=""), overwrite=TRUE)
# output the eigenprotein
write.csv(MEs,paste("./out_r/WGCNA/",technology_platform,"_unip/Module eigenprotein.csv",sep=""))
## Collect used parameters
Parameter=c("softPower","RCutoff","MCutheight","PowerUpper","minModuleSize","prot_count")
Value=c(softPower,RCutoff,MCutheight,PowerUpper,minModuleSize,prot_count)
used_parameters <- cbind(Parameter,Value) %>% as_tibble()
# Save used parametersas Excel workbook
used_parameters %>%
writexl::write_xlsx(path = paste("./out_r/WGCNA/",technology_platform,"_unip/Used_parameters.xlsx",sep=""))
}
## pickSoftThreshold: will use block size 417.
## pickSoftThreshold: calculating connectivity for given powers...
## ..working on genes 1 through 417 of 417
## Power SFT.R.sq slope truncated.R.sq mean.k. median.k. max.k.
## 1 1 0.3110 2.150 0.9470 115.000 116.0000 157.00
## 2 2 0.0107 0.181 0.9360 46.800 47.0000 82.80
## 3 3 0.0464 -0.321 0.9320 23.200 22.9000 50.00
## 4 4 0.3300 -0.842 0.9520 12.900 12.5000 32.60
## 5 5 0.4890 -0.989 0.9690 7.850 7.3500 22.30
## 6 6 0.5900 -1.060 0.9380 5.070 4.4700 15.90
## 7 7 0.6660 -1.090 0.9340 3.430 3.0000 11.50
## 8 8 0.7760 -1.050 0.9730 2.420 1.9900 8.60
## 9 9 0.8250 -1.070 0.9470 1.750 1.3500 6.74
## 10 10 0.8470 -1.230 0.9680 1.310 0.9790 5.83
## 11 12 0.8120 -1.470 0.9310 0.775 0.5080 4.54
## 12 14 0.8460 -1.630 0.8980 0.492 0.2950 3.72
## 13 16 0.9040 -1.660 0.9120 0.329 0.1690 3.12
## 14 18 0.2370 -2.540 0.0201 0.229 0.0979 2.64
## 15 20 0.2770 -2.610 0.0993 0.165 0.0584 2.26
## ..connectivity..
## ..matrix multiplication (system BLAS)..
## ..normalization..
## ..done.
## ..cutHeight not given, setting it to 0.986 ===> 99% of the (truncated) height range in dendro.
## ..done.
## [1] "Dynamic tree cut results:"
## dynamicMods
## 1 2 3 4 5 6 7
## 96 92 77 57 39 33 23
## mergeCloseModules: Merging modules whose distance is less than 0.1
## multiSetMEs: Calculating module MEs.
## Working on set 1 ...
## moduleEigengenes: Calculating 7 module eigengenes in given set.
## Calculating new MEs...
## multiSetMEs: Calculating module MEs.
## Working on set 1 ...
## moduleEigengenes: Calculating 7 module eigengenes in given set.
## [1] "Modules after merging:"
## moduleColors
## black blue brown green red turquoise yellow
## 23 92 77 39 33 96 57
## [1] "./out_r/WGCNA/pea_unip/WGCNAClusterPattenAve.png"
## Warning in greenWhiteRed(50): WGCNA::greenWhiteRed: this palette is not suitable for people
## with green-red color blindness (the most common kind of color blindness).
## Consider using the function blueWhiteRed instead.
## Warning in log(x.1): NaNs produced
## Warning in log(x.1): NaNs produced
## Warning in log(x.1): NaNs produced
## Warning in log(x.1): NaNs produced
## Warning in log(x.1): NaNs produced
## Warning in log(x.1): NaNs produced
## Warning in log(x.1): NaNs produced
## Warning in log(x.1): NaNs produced
## Warning in log(x.1): NaNs produced
## Warning in log(x.1): NaNs produced
## Warning in log(x.1): NaNs produced
## Warning in log(x.1): NaNs produced
## Warning in log(x.1): NaNs produced
## Warning in log(x.1): NaNs produced
## Warning in log(x.1): NaNs produced
## Warning in log(x.1): NaNs produced
## Warning in log(x.1): NaNs produced
## Warning in log(x.1): NaNs produced
## Warning in log(x.1): NaNs produced
## Warning in log(x.1): NaNs produced
## Warning in log(x.1): NaNs produced
## Warning in log(x.1): NaNs produced
## Warning in log(x.1): NaNs produced
## Warning in log(x.1): NaNs produced
## Warning in log(x.1): NaNs produced
## Warning in log(x.1): NaNs produced
## Warning in log(x.1): NaNs produced
## Warning in log(x.1): NaNs produced
## Warning in log(x.1): NaNs produced
## Warning in log(x.1): NaNs produced
## Warning in log(x.1): NaNs produced
## Warning in log(x.1): NaNs produced
## Warning in log(x.1): NaNs produced
## Warning in log(x.1): NaNs produced
## Warning in log(x.1): NaNs produced
## Warning in log(x.1): NaNs produced
## Warning in log(x.1): NaNs produced
## Warning in log(x.1): NaNs produced
## Warning in log(x.1): NaNs produced
## Warning in log(x.1): NaNs produced
## Warning in log(x.1): NaNs produced
## Warning in log(x.1): NaNs produced
## pickSoftThreshold: will use block size 745.
## pickSoftThreshold: calculating connectivity for given powers...
## ..working on genes 1 through 745 of 745
## Power SFT.R.sq slope truncated.R.sq mean.k. median.k. max.k.
## 1 1 0.577 0.731 0.648 287.00 297.000 425.0
## 2 2 0.118 -0.128 0.283 155.00 154.000 297.0
## 3 3 0.648 -0.446 0.706 96.70 88.800 226.0
## 4 4 0.808 -0.656 0.857 65.70 55.500 180.0
## 5 5 0.862 -0.762 0.880 47.20 35.600 147.0
## 6 6 0.871 -0.835 0.913 35.30 24.500 124.0
## 7 7 0.902 -0.900 0.935 27.30 17.100 106.0
## 8 8 0.889 -0.979 0.929 21.60 12.200 92.7
## 9 9 0.852 -1.050 0.908 17.40 9.130 82.1
## 10 10 0.814 -1.100 0.890 14.30 6.710 73.4
## 11 12 0.813 -1.190 0.897 10.10 3.820 60.2
## 12 14 0.839 -1.220 0.929 7.38 2.260 50.5
## 13 16 0.809 -1.310 0.922 5.59 1.430 43.2
## 14 18 0.828 -1.340 0.936 4.35 0.952 37.5
## 15 20 0.791 -1.410 0.909 3.46 0.683 32.9
## ..connectivity..
## ..matrix multiplication (system BLAS)..
## ..normalization..
## ..done.
## ..cutHeight not given, setting it to 0.95 ===> 99% of the (truncated) height range in dendro.
## ..done.
## [1] "Dynamic tree cut results:"
## dynamicMods
## 1 2 3
## 417 231 97
## mergeCloseModules: Merging modules whose distance is less than 0.1
## multiSetMEs: Calculating module MEs.
## Working on set 1 ...
## moduleEigengenes: Calculating 3 module eigengenes in given set.
## Calculating new MEs...
## multiSetMEs: Calculating module MEs.
## Working on set 1 ...
## moduleEigengenes: Calculating 3 module eigengenes in given set.
## [1] "Modules after merging:"
## moduleColors
## blue brown turquoise
## 231 97 417
## Warning in greenWhiteRed(50): WGCNA::greenWhiteRed: this palette is not suitable for people
## with green-red color blindness (the most common kind of color blindness).
## Consider using the function blueWhiteRed instead.
## Warning in greenWhiteRed(50): NaNs produced
## Warning in greenWhiteRed(50): NaNs produced
## Warning in greenWhiteRed(50): NaNs produced
## Warning in greenWhiteRed(50): NaNs produced
## Warning in greenWhiteRed(50): NaNs produced
## Warning in greenWhiteRed(50): NaNs produced
## Warning in greenWhiteRed(50): NaNs produced
## Warning in greenWhiteRed(50): NaNs produced
## Warning in bplt(at[i], wid = width[i], stats = z$stats[, i], out = z$out[z$group
## == : Outlier (-Inf) in boxplot 1 is not drawn
## Warning in log(x.1): NaNs produced
## Warning in log(x.1): NaNs produced
## Warning in log(x.1): NaNs produced
## Warning in log(x.1): NaNs produced
## Warning in log(x.1): NaNs produced
## Warning in log(x.1): NaNs produced
## Warning in log(x.1): NaNs produced
## Warning in log(x.1): NaNs produced
## Warning in log(x.1): NaNs produced
## Warning in log(x.1): NaNs produced