-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathSynth.ecl
87 lines (85 loc) · 3.21 KB
/
Synth.ecl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
IMPORT Std.System.Thorlib;
IMPORT ML_CORE.Types AS cTypes;
IMPORT $ AS HPCC_Causality;
IMPORT HPCC_Causality.Types;
IMPORT Python3 AS Python;
SEM := Types.SEM;
nNodes := Thorlib.nodes();
node := Thorlib.node();
NumericField := cTypes.NumericField;
AnyField := Types.AnyField;
/**
* Module to produce a synthetic, multivariate dataset from a Structural Equation
* Model (SEM).
*
* This allows creation of datasets with known distributional and or causal characteristics.
*
* @param semDef A Structural Equation Model in Types.SEM format.
* @see Types.SEM
* @see Test/Synth/synthTest.ecl for an example
*
*/
EXPORT Synth(DATASET(SEM) semDef) := MODULE
globalScope := 'causality' + node + '.ecl';
/**
* Generate the data.
*
* Data generation is fully parallelized, each node generates numRecs / nNodes samples
* from the same multivariate distribution. *
* @param numRecs The number of samples (multivariate observations) to generate.
* @return The generated samples in NumericField format. The field numbers correspond
* to the order of variables specified in the SEM.
* @see ML_Core.Types.NumericField
*/
EXPORT DATASET(AnyField) Generate(UNSIGNED numRecs) := FUNCTION
/**
* Embed function to do the gereration using the "Because.synth" python module.
* @private
*/
STREAMED DATASET(AnyField) pySynth(STREAMED DATASET(SEM) pysem,
UNSIGNED nrecs, UNSIGNED pynnodes, UNSIGNED pynode)
:= EMBED(Python: globalscope(globalScope), persist('query'), activity)
from math import ceil
import because
import importlib
importlib.reload(because)
from because.synth import gen_data
from because.hpcc_utils import format_exc
fullmods = [x for x in pysem]
init, vars, sem = fullmods[0]
recsPerNode = ceil(nrecs / pynnodes)
firstId = pynode * recsPerNode + 1
if pynode == pynnodes - 1:
numRecs = nrecs - firstId + 1
else:
numRecs = recsPerNode
gen = gen_data.Gen(mod=vars, sem=sem, init=init)
try:
recs = gen.samples(numRecs)
except:
exc = format_exc.format('generate')
assert False, exc
outrecs = []
i = 0
try:
for rec in recs:
for j in range(len(rec)):
val = rec[j]
if type(val) == type(''):
outrec = (1, firstId + i, j+1, 0.0, val)
else:
outrec = (1, firstId + i, j+1, float(val), '')
outrecs.append(outrec)
i += 1
except:
exc = format_exc.format('retrieve')
assert False, exc
return outrecs
ENDEMBED;
// Distribute SEM to All Nodes
semDist := DISTRIBUTE(semDef, ALL);
outData0 := pySynth(semDist, numRecs, nNodes, node);
outData := SORT(outData0, id, number, LOCAL);
RETURN outData;
END;
END;