-
Notifications
You must be signed in to change notification settings - Fork 2.2k
/
app.py
656 lines (571 loc) · 22.6 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
#!/usr/bin/env python
"""
This script runs a Gradio App for the Open-Sora model.
Usage:
python demo.py <config-path>
"""
import argparse
import datetime
import importlib
import os
import subprocess
import sys
from tempfile import NamedTemporaryFile
import spaces
import torch
import gradio as gr
MODEL_TYPES = ["v1.2-stage3"]
WATERMARK_PATH = "./assets/images/watermark/watermark.png"
CONFIG_MAP = {
"v1.2-stage3": "configs/opensora-v1-2/inference/sample.py",
}
HF_STDIT_MAP = {"v1.2-stage3": "hpcai-tech/OpenSora-STDiT-v3"}
# ============================
# Prepare Runtime Environment
# ============================
def install_dependencies(enable_optimization=False):
"""
Install the required dependencies for the demo if they are not already installed.
"""
def _is_package_available(name) -> bool:
try:
importlib.import_module(name)
return True
except (ImportError, ModuleNotFoundError):
return False
if enable_optimization:
# install flash attention
if not _is_package_available("flash_attn"):
subprocess.run(
f"{sys.executable} -m pip install flash-attn --no-build-isolation",
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
shell=True,
)
# install apex for fused layernorm
if not _is_package_available("apex"):
subprocess.run(
f'{sys.executable} -m pip install -v --disable-pip-version-check --no-cache-dir --no-build-isolation --config-settings "--build-option=--cpp_ext" --config-settings "--build-option=--cuda_ext" git+https://github.com/NVIDIA/apex.git',
shell=True,
)
# install ninja
if not _is_package_available("ninja"):
subprocess.run(f"{sys.executable} -m pip install ninja", shell=True)
# install xformers
if not _is_package_available("xformers"):
subprocess.run(
f"{sys.executable} -m pip install -v -U git+https://github.com/facebookresearch/xformers.git@main#egg=xformers",
shell=True,
)
# ============================
# Model-related
# ============================
def read_config(config_path):
"""
Read the configuration file.
"""
from mmengine.config import Config
return Config.fromfile(config_path)
def build_models(model_type, config, enable_optimization=False):
"""
Build the models for the given model type and configuration.
"""
# build vae
from opensora.registry import MODELS, build_module
vae = build_module(config.vae, MODELS).cuda()
# build text encoder
text_encoder = build_module(config.text_encoder, MODELS) # T5 must be fp32
text_encoder.t5.model = text_encoder.t5.model.cuda()
# build stdit
# we load model from HuggingFace directly so that we don't need to
# handle model download logic in HuggingFace Space
from opensora.models.stdit.stdit3 import STDiT3
model_kwargs = {k: v for k, v in config.model.items() if k not in ("type", "from_pretrained", "force_huggingface")}
stdit = STDiT3.from_pretrained(HF_STDIT_MAP[model_type], **model_kwargs)
stdit = stdit.cuda()
# build scheduler
from opensora.registry import SCHEDULERS
scheduler = build_module(config.scheduler, SCHEDULERS)
# hack for classifier-free guidance
text_encoder.y_embedder = stdit.y_embedder
# move modelst to device
vae = vae.to(torch.bfloat16).eval()
text_encoder.t5.model = text_encoder.t5.model.eval() # t5 must be in fp32
stdit = stdit.to(torch.bfloat16).eval()
# clear cuda
torch.cuda.empty_cache()
return vae, text_encoder, stdit, scheduler
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--model-type",
default="v1.2-stage3",
choices=MODEL_TYPES,
help=f"The type of model to run for the Gradio App, can only be {MODEL_TYPES}",
)
parser.add_argument("--output", default="./outputs", type=str, help="The path to the output folder")
parser.add_argument("--port", default=None, type=int, help="The port to run the Gradio App on.")
parser.add_argument("--host", default="0.0.0.0", type=str, help="The host to run the Gradio App on.")
parser.add_argument("--share", action="store_true", help="Whether to share this gradio demo.")
parser.add_argument(
"--enable-optimization",
action="store_true",
help="Whether to enable optimization such as flash attention and fused layernorm",
)
return parser.parse_args()
# ============================
# Main Gradio Script
# ============================
# as `run_inference` needs to be wrapped by `spaces.GPU` and the input can only be the prompt text
# so we can't pass the models to `run_inference` as arguments.
# instead, we need to define them globally so that we can access these models inside `run_inference`
# read config
args = parse_args()
config = read_config(CONFIG_MAP[args.model_type])
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
# make outputs dir
os.makedirs(args.output, exist_ok=True)
# disable torch jit as it can cause failure in gradio SDK
# gradio sdk uses torch with cuda 11.3
torch.jit._state.disable()
# set up
install_dependencies(enable_optimization=args.enable_optimization)
# import after installation
from opensora.datasets import IMG_FPS, save_sample
from opensora.datasets.aspect import get_image_size, get_num_frames
from opensora.models.text_encoder.t5 import text_preprocessing
from opensora.utils.inference_utils import (
add_watermark,
append_generated,
append_score_to_prompts,
apply_mask_strategy,
collect_references_batch,
dframe_to_frame,
extract_json_from_prompts,
extract_prompts_loop,
get_random_prompt_by_openai,
has_openai_key,
merge_prompt,
prepare_multi_resolution_info,
refine_prompts_by_openai,
split_prompt,
)
from opensora.utils.misc import to_torch_dtype
# some global variables
dtype = to_torch_dtype(config.dtype)
device = torch.device("cuda")
# build model
vae, text_encoder, stdit, scheduler = build_models(
args.model_type, config, enable_optimization=args.enable_optimization
)
def run_inference(
mode,
prompt_text,
resolution,
aspect_ratio,
length,
motion_strength,
aesthetic_score,
use_motion_strength,
use_aesthetic_score,
camera_motion,
reference_image,
refine_prompt,
fps,
num_loop,
seed,
sampling_steps,
cfg_scale,
):
if prompt_text is None or prompt_text == "":
gr.Warning("Your prompt is empty, please enter a valid prompt")
return None
torch.manual_seed(seed)
with torch.inference_mode():
# ======================
# 1. Preparation arguments
# ======================
# parse the inputs
# frame_interval must be 1 so we ignore it here
image_size = get_image_size(resolution, aspect_ratio)
# compute generation parameters
if mode == "Text2Image":
num_frames = 1
fps = IMG_FPS
else:
num_frames = config.num_frames
num_frames = get_num_frames(length)
condition_frame_length = int(num_frames / 17 * 5 / 3)
condition_frame_edit = 0.0
input_size = (num_frames, *image_size)
latent_size = vae.get_latent_size(input_size)
multi_resolution = "OpenSora"
align = 5
# == prepare mask strategy ==
if mode == "Text2Image":
mask_strategy = [None]
elif mode == "Text2Video":
if reference_image is not None:
mask_strategy = ["0"]
else:
mask_strategy = [None]
else:
raise ValueError(f"Invalid mode: {mode}")
# == prepare reference ==
if mode == "Text2Image":
refs = [""]
elif mode == "Text2Video":
if reference_image is not None:
# save image to disk
from PIL import Image
im = Image.fromarray(reference_image)
temp_file = NamedTemporaryFile(suffix=".png")
im.save(temp_file.name)
refs = [temp_file.name]
else:
refs = [""]
else:
raise ValueError(f"Invalid mode: {mode}")
# == get json from prompts ==
batch_prompts = [prompt_text]
batch_prompts, refs, mask_strategy = extract_json_from_prompts(batch_prompts, refs, mask_strategy)
# == get reference for condition ==
refs = collect_references_batch(refs, vae, image_size)
# == multi-resolution info ==
model_args = prepare_multi_resolution_info(
multi_resolution, len(batch_prompts), image_size, num_frames, fps, device, dtype
)
# == process prompts step by step ==
# 0. split prompt
# each element in the list is [prompt_segment_list, loop_idx_list]
batched_prompt_segment_list = []
batched_loop_idx_list = []
for prompt in batch_prompts:
prompt_segment_list, loop_idx_list = split_prompt(prompt)
batched_prompt_segment_list.append(prompt_segment_list)
batched_loop_idx_list.append(loop_idx_list)
# 1. refine prompt by openai
if refine_prompt:
# check if openai key is provided
if not has_openai_key():
gr.Warning("OpenAI API key is not provided, the prompt will not be enhanced.")
else:
for idx, prompt_segment_list in enumerate(batched_prompt_segment_list):
batched_prompt_segment_list[idx] = refine_prompts_by_openai(prompt_segment_list)
# process scores
aesthetic_score = aesthetic_score if use_aesthetic_score else None
motion_strength = motion_strength if use_motion_strength and mode != "Text2Image" else None
camera_motion = None if camera_motion == "none" or mode == "Text2Image" else camera_motion
# 2. append score
for idx, prompt_segment_list in enumerate(batched_prompt_segment_list):
batched_prompt_segment_list[idx] = append_score_to_prompts(
prompt_segment_list,
aes=aesthetic_score,
flow=motion_strength,
camera_motion=camera_motion,
)
# 3. clean prompt with T5
for idx, prompt_segment_list in enumerate(batched_prompt_segment_list):
batched_prompt_segment_list[idx] = [text_preprocessing(prompt) for prompt in prompt_segment_list]
# 4. merge to obtain the final prompt
batch_prompts = []
for prompt_segment_list, loop_idx_list in zip(batched_prompt_segment_list, batched_loop_idx_list):
batch_prompts.append(merge_prompt(prompt_segment_list, loop_idx_list))
# =========================
# Generate image/video
# =========================
video_clips = []
for loop_i in range(num_loop):
# 4.4 sample in hidden space
batch_prompts_loop = extract_prompts_loop(batch_prompts, loop_i)
# == loop ==
if loop_i > 0:
refs, mask_strategy = append_generated(
vae, video_clips[-1], refs, mask_strategy, loop_i, condition_frame_length, condition_frame_edit
)
# == sampling ==
z = torch.randn(len(batch_prompts), vae.out_channels, *latent_size, device=device, dtype=dtype)
masks = apply_mask_strategy(z, refs, mask_strategy, loop_i, align=align)
# 4.6. diffusion sampling
# hack to update num_sampling_steps and cfg_scale
scheduler_kwargs = config.scheduler.copy()
scheduler_kwargs.pop("type")
scheduler_kwargs["num_sampling_steps"] = sampling_steps
scheduler_kwargs["cfg_scale"] = cfg_scale
scheduler.__init__(**scheduler_kwargs)
samples = scheduler.sample(
stdit,
text_encoder,
z=z,
prompts=batch_prompts_loop,
device=device,
additional_args=model_args,
progress=True,
mask=masks,
)
samples = vae.decode(samples.to(dtype), num_frames=num_frames)
video_clips.append(samples)
# =========================
# Save output
# =========================
video_clips = [val[0] for val in video_clips]
for i in range(1, num_loop):
video_clips[i] = video_clips[i][:, dframe_to_frame(condition_frame_length) :]
video = torch.cat(video_clips, dim=1)
current_datetime = datetime.datetime.now()
timestamp = current_datetime.timestamp()
save_path = os.path.join(args.output, f"output_{timestamp}")
saved_path = save_sample(video, save_path=save_path, fps=24)
torch.cuda.empty_cache()
# add watermark
# all watermarked videos should have a _watermarked suffix
if mode != "Text2Image" and os.path.exists(WATERMARK_PATH):
watermarked_path = saved_path.replace(".mp4", "_watermarked.mp4")
success = add_watermark(saved_path, WATERMARK_PATH, watermarked_path)
if success:
return watermarked_path
else:
return saved_path
else:
return saved_path
@spaces.GPU(duration=200)
def run_image_inference(
prompt_text,
resolution,
aspect_ratio,
length,
motion_strength,
aesthetic_score,
use_motion_strength,
use_aesthetic_score,
camera_motion,
reference_image,
refine_prompt,
fps,
num_loop,
seed,
sampling_steps,
cfg_scale,
):
return run_inference(
"Text2Image",
prompt_text,
resolution,
aspect_ratio,
length,
motion_strength,
aesthetic_score,
use_motion_strength,
use_aesthetic_score,
camera_motion,
reference_image,
refine_prompt,
fps,
num_loop,
seed,
sampling_steps,
cfg_scale,
)
@spaces.GPU(duration=200)
def run_video_inference(
prompt_text,
resolution,
aspect_ratio,
length,
motion_strength,
aesthetic_score,
use_motion_strength,
use_aesthetic_score,
camera_motion,
reference_image,
refine_prompt,
fps,
num_loop,
seed,
sampling_steps,
cfg_scale,
):
# if (resolution == "480p" and length == "16s") or \
# (resolution == "720p" and length in ["8s", "16s"]):
# gr.Warning("Generation is interrupted as the combination of 480p and 16s will lead to CUDA out of memory")
# else:
return run_inference(
"Text2Video",
prompt_text,
resolution,
aspect_ratio,
length,
motion_strength,
aesthetic_score,
use_motion_strength,
use_aesthetic_score,
camera_motion,
reference_image,
refine_prompt,
fps,
num_loop,
seed,
sampling_steps,
cfg_scale,
)
def generate_random_prompt():
if "OPENAI_API_KEY" not in os.environ:
gr.Warning("Your prompt is empty and the OpenAI API key is not provided, please enter a valid prompt")
return None
else:
prompt_text = get_random_prompt_by_openai()
return prompt_text
def main():
# create demo
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
gr.HTML(
"""
<div style='text-align: center;'>
<p align="center">
<img src="https://github.com/hpcaitech/Open-Sora/raw/main/assets/readme/icon.png" width="250"/>
</p>
<div style="display: flex; gap: 10px; justify-content: center;">
<a href="https://github.com/hpcaitech/Open-Sora/stargazers"><img src="https://img.shields.io/github/stars/hpcaitech/Open-Sora?style=social"></a>
<a href="https://hpcaitech.github.io/Open-Sora/"><img src="https://img.shields.io/badge/Gallery-View-orange?logo=&"></a>
<a href="https://discord.gg/kZakZzrSUT"><img src="https://img.shields.io/badge/Discord-join-blueviolet?logo=discord&"></a>
<a href="https://join.slack.com/t/colossalaiworkspace/shared_invite/zt-247ipg9fk-KRRYmUl~u2ll2637WRURVA"><img src="https://img.shields.io/badge/Slack-ColossalAI-blueviolet?logo=slack&"></a>
<a href="https://twitter.com/yangyou1991/status/1769411544083996787?s=61&t=jT0Dsx2d-MS5vS9rNM5e5g"><img src="https://img.shields.io/badge/Twitter-Discuss-blue?logo=twitter&"></a>
<a href="https://raw.githubusercontent.com/hpcaitech/public_assets/main/colossalai/img/WeChat.png"><img src="https://img.shields.io/badge/微信-小助手加群-green?logo=wechat&"></a>
<a href="https://hpc-ai.com/blog/open-sora-v1.0"><img src="https://img.shields.io/badge/Open_Sora-Blog-blue"></a>
</div>
<h1 style='margin-top: 5px;'>Open-Sora: Democratizing Efficient Video Production for All</h1>
</div>
"""
)
with gr.Row():
with gr.Column():
prompt_text = gr.Textbox(label="Prompt", placeholder="Describe your video here", lines=4)
refine_prompt = gr.Checkbox(
value=has_openai_key(), label="Refine prompt with GPT4o", interactive=has_openai_key()
)
random_prompt_btn = gr.Button("Random Prompt By GPT4o", interactive=has_openai_key())
gr.Markdown("## Basic Settings")
resolution = gr.Radio(
choices=["144p", "240p", "360p", "480p", "720p"],
value="480p",
label="Resolution",
)
aspect_ratio = gr.Radio(
choices=["9:16", "16:9", "3:4", "4:3", "1:1"],
value="9:16",
label="Aspect Ratio (H:W)",
)
length = gr.Radio(
choices=["2s", "4s", "8s", "16s"],
value="2s",
label="Video Length",
info="only effective for video generation, 8s may fail as Hugging Face ZeroGPU has the limitation of max 200 seconds inference time.",
)
with gr.Row():
seed = gr.Slider(value=1024, minimum=1, maximum=2048, step=1, label="Seed")
sampling_steps = gr.Slider(value=30, minimum=1, maximum=200, step=1, label="Sampling steps")
cfg_scale = gr.Slider(value=7.0, minimum=0.0, maximum=10.0, step=0.1, label="CFG Scale")
with gr.Row():
with gr.Column():
motion_strength = gr.Slider(
value=5,
minimum=0,
maximum=100,
step=1,
label="Motion Strength",
info="only effective for video generation",
)
use_motion_strength = gr.Checkbox(value=False, label="Enable")
with gr.Column():
aesthetic_score = gr.Slider(
value=6.5,
minimum=4,
maximum=7,
step=0.1,
label="Aesthetic",
info="effective for text & video generation",
)
use_aesthetic_score = gr.Checkbox(value=True, label="Enable")
camera_motion = gr.Radio(
value="none",
label="Camera Motion",
choices=["none", "pan right", "pan left", "tilt up", "tilt down", "zoom in", "zoom out", "static"],
interactive=True,
)
gr.Markdown("## Advanced Settings")
with gr.Row():
fps = gr.Slider(
value=24,
minimum=1,
maximum=60,
step=1,
label="FPS",
info="This is the frames per seconds for video generation, keep it to 24 if you are not sure",
)
num_loop = gr.Slider(
value=1,
minimum=1,
maximum=20,
step=1,
label="Number of Loops",
info="This will change the length of the generated video, keep it to 1 if you are not sure",
)
gr.Markdown("## Reference Image")
reference_image = gr.Image(label="Image (optional)", show_download_button=True)
with gr.Column():
output_video = gr.Video(label="Output Video", height="100%")
with gr.Row():
image_gen_button = gr.Button("Generate image")
video_gen_button = gr.Button("Generate video")
image_gen_button.click(
fn=run_image_inference,
inputs=[
prompt_text,
resolution,
aspect_ratio,
length,
motion_strength,
aesthetic_score,
use_motion_strength,
use_aesthetic_score,
camera_motion,
reference_image,
refine_prompt,
fps,
num_loop,
seed,
sampling_steps,
cfg_scale,
],
outputs=reference_image,
)
video_gen_button.click(
fn=run_video_inference,
inputs=[
prompt_text,
resolution,
aspect_ratio,
length,
motion_strength,
aesthetic_score,
use_motion_strength,
use_aesthetic_score,
camera_motion,
reference_image,
refine_prompt,
fps,
num_loop,
seed,
sampling_steps,
cfg_scale,
],
outputs=output_video,
)
random_prompt_btn.click(fn=generate_random_prompt, outputs=prompt_text)
# launch
demo.queue(max_size=5, default_concurrency_limit=1)
demo.launch(server_port=args.port, server_name=args.host, share=args.share, max_threads=1)
if __name__ == "__main__":
main()