forked from Marxan-source-code/marxan
-
Notifications
You must be signed in to change notification settings - Fork 0
/
thermal_annealing.cpp
358 lines (297 loc) · 14.6 KB
/
thermal_annealing.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
#include <algorithm>
#include <chrono>
#include <ctime>
#include <cfloat>
#include <iostream>
#include <omp.h>
#include <chrono>
// load the required function definition modules
#include "defines.hpp"
#include "utils.hpp"
#include "algorithms.hpp"
#include "computation.hpp"
#include "clumping.hpp"
#include "anneal.hpp"
#include "heuristics.hpp"
#include "probability.hpp"
#include "input.hpp"
#include "output.hpp"
#include "score_change.hpp"
namespace marxan {
using namespace algorithms;
using namespace utils;
// determines if the change value for changing a single planning unit status is good
// does the change stochastically fall below the current acceptance probability?
int isGoodChange(const scost& change, double temp, uniform_real_distribution<double>& float_range, rng_engine& rngEngine)
{
if (change.total <= 0)
return 1;
else
return (exp(-change.total / temp) > float_range(rngEngine));
}
void initialiseConnollyAnnealing(int puno, int spno, const vector<spustuff>& pu, const vector<sconnections>& connections, vector<sspecies>& spec,
const vector<spu>& SM, vector<spu_out>& SM_out, double cm, sanneal& anneal, int aggexist,
vector<int>& R, double prop, int clumptype, int irun, stringstream& logBuffer, rng_engine& rngEngine)
{
long long i;
long int ipu, imode, iOldR;
double deltamin = 0, deltamax = 0;
double localdelta = 1E-10;
scost change;
scost reserve;
#ifdef DEBUGTRACEFILE
FILE* fp = nullptr;
if (verbosity > 4)
{
string writename = fnames.outputdir + "debug_maropt_initialiseConnollyAnnealing_" + to_string(irun) + ".csv";
fp = fopen(writename.c_str(), "w");
if (fp == NULL)
displayErrorMessage("cannot create debug_maropt_initialiseConnollyAnnealing file %s\n", writename.c_str());
fprintf(fp, "i,ipu,puid,old R,imode,R,total,max,min\n");
}
#endif
#ifdef DEBUG_PROB1D
logBuffer << "initialiseConnollyAnnealing A - before initialise reserve\n";
#endif
initialiseReserve(prop, pu, R, rngEngine);
#ifdef DEBUG_PROB1D
logBuffer << "initialiseConnollyAnnealing B - after initialise reserve\n";
#endif
if (aggexist)
ClearClumps(spno, spec, pu, SM, SM_out);
#ifdef DEBUG_PROB1D
logBuffer << "initialiseConnollyAnnealing C - before compute reserve\n";
#endif
computeReserveValue(puno, spno, R, pu, connections, SM, SM_out, cm, spec, aggexist, reserve, clumptype, logBuffer);
#ifdef DEBUG_PROB1D
logBuffer << "initialiseConnollyAnnealing D - after compute reserve\n";
#endif
std::uniform_int_distribution<int> int_range(0, puno - 1);
for (i = 1; i <= anneal.iterations / 100; i++)
{
ipu = int_range(rngEngine);
iOldR = R[ipu];
imode = R[ipu] == 1 ? -1 : 1;
computeChangeScore(-1, ipu, spno, puno, pu, connections, spec, SM, SM_out, R, cm, imode, change, reserve, 0, 0, 0, 0, clumptype);
doChange(ipu, puno, R, reserve, change, pu, SM, SM_out, spec, connections, imode, clumptype, logBuffer);
if (change.total > deltamax)
deltamax = change.total;
if (change.total > localdelta && (deltamin < localdelta || change.total < deltamin))
deltamin = change.total;
if (verbosity > 4)
fprintf(fp, "%li,%li,%i,%li,%li,%i,%g,%g,%g\n", i, ipu, pu[ipu].id, iOldR, imode, R[ipu], change.total, deltamax, deltamin);
// i,ipu,puid,R,imode,iZone,total,max,min
} // Run through this bit for iterations/100 times
anneal.Tinit = deltamax;
deltamin *= 0.1;
anneal.Tcool = exp(log(deltamin / anneal.Tinit) / (double)anneal.Titns);
#ifdef DEBUGTRACEFILE
if (verbosity > 4)
fclose(fp);
#endif
} // initialiseConnollyAnnealing
// initialise adaptive annealing (where anneal type = 3)
void initialiseAdaptiveAnnealing(int puno, int spno, double prop, vector<int>& R, const vector<spustuff>& pu, const vector<sconnections>& connections,
const vector<spu>& SM, vector<spu_out>& SM_out, const double cm, vector<sspecies>& spec, int aggexist, sanneal& anneal, int clumptype, stringstream& logBuffer, rng_engine& rngEngine)
{
long int i, isamples;
double sum = 0, sum2 = 0;
double sigma;
scost cost;
double c = 10; /* An initial temperature acceptance number */
isamples = 1000; /* Hardwired number of samples to take */
for (i = 0; i < isamples; i++)
{ /* Generate Random Reserve */
initialiseReserve(prop, pu, R, rngEngine);
/* Score Random reserve */
computeReserveValue(puno, spno, R, pu, connections, SM, SM_out, cm, spec, aggexist, cost, clumptype, logBuffer);
/* Add Score to Sum */
sum += cost.total;
sum2 += cost.total * cost.total;
} /* Sample space iterations/100 times */
sigma = sqrt(sum2 - pow(sum / isamples, 2)) / (isamples - 1);
anneal.Tinit = c * sigma;
anneal.sigma = sigma;
anneal.temp = anneal.Tinit;
anneal.tempold = anneal.temp;
anneal.sum = 0;
anneal.sum2 = 0;
logBuffer << "Tinit " << anneal.Tinit << " Titns " << anneal.Titns << " Tcool " << anneal.Tcool << endl;
} // initialiseAdaptiveAnnealing
// reduce annealing temperature when anneal type = 3
void reduceTemperature(sanneal& anneal)
{
double omega = 0.7; /* Control parameter */
double sigmanew, sigmamod;
double lambda = 0.7; /* control parameter*/
sigmanew = (anneal.sum2 - pow((anneal.sum / anneal.Tlen), 2)) / (anneal.Tlen - 1);
sigmamod = (1 - omega) * sigmanew + omega * anneal.sigma * (anneal.temp / anneal.tempold);
anneal.tempold = anneal.temp;
anneal.temp = exp(-lambda * anneal.temp / sigmamod);
anneal.sigma = sigmamod;
anneal.sum = 0;
anneal.sum2 = 0;
}
// run simulated thermal annealing selection algorithm
void thermalAnnealing(int spno, int puno, const vector<sconnections>& connections, vector<int>& R, double cm,
vector<sspecies>& spec, const vector<spustuff>& pu, const vector<spu>& SM, vector<spu_out>& SM_out, scost& reserve,
long int repeats, int irun, string savename, double misslevel,
int aggexist, double costthresh, double tpf1, double tpf2, int clumptype, sanneal& anneal, stringstream& logBuffer, rng_engine& rngEngine)
{
scost change;
long long itime = 0;
long int ipu = -1, i, itemp, snapcount = 0, ichanges = 0, iPreviousR, iGoodChange = 0;
long int iRowCounter, iRowLimit;
double rTemperature, rThreshold, rThresholdMultiplier;
string tempname1, tempname2, sRun = to_string(irun), paddedRun = utils::intToPaddedString(irun, 5);
FILE* fp = nullptr, * ttfp = nullptr, * Rfp = nullptr;
string writename;
uniform_real_distribution<double> float_range(0.0, 1.0);
logBuffer << "thermalAnnealing start iterations " << anneal.iterations << "\n";
if (verbosity > 4)
{
writeR(0, "after_Annealing_entered", puno, R, pu, fnames);
writename = fnames.outputdir + "debug_maropt_annealing_" + sRun + ".csv";
if ((fp = fopen(writename.c_str(), "w")) == NULL)
displayErrorMessage("cannot create annealing file %s\n", writename.c_str());
fprintf(fp, "itime,ipu,puid,R,itemp,newR,iGoodChange,changetotal,changecost,changeconnection,changepen,temp\n");
}
if (fnames.saveannealingtrace)
{
tempname2 = savename + "_anneal_objective" + paddedRun + ".csv";
writename = fnames.outputdir + tempname2;
if ((ttfp = fopen(writename.c_str(), "w")) == NULL)
displayErrorMessage("cannot create threshold trace file %s\n", writename.c_str());
fprintf(ttfp, "iteration,threshold,dochange,total,pus,cost,connectivity,penalty,shortfall");
if (fProb1D == 1)
fprintf(ttfp, ",probability1D");
if (fProb2D == 1)
fprintf(ttfp, ",probability2D");
fprintf(ttfp, ",puindex\n");
// write iteration zero
fprintf(ttfp, "%li,%f,%li,%f,%i,%f,%f,%f,%f",
itime, costthresh, iGoodChange, reserve.total,
reserve.pus, reserve.cost, reserve.connection, reserve.penalty, reserve.shortfall);
if (fProb1D == 1)
fprintf(ttfp, ",%f", reserve.probability1D);
if (fProb2D == 1)
fprintf(ttfp, ",%f", reserve.probability2D);
fprintf(ttfp, ",%li\n", ipu);
// iteration,threshold,dochange,total,pus,cost,connectivity,penalty,probability
tempname2 = savename + "_anneal_zones" + paddedRun + ".csv";
writename = fnames.outputdir + tempname2;
if ((Rfp = fopen(writename.c_str(), "w")) == NULL)
displayErrorMessage("cannot create threshold trace file %s\n", writename.c_str());
fprintf(Rfp, "configuration");
for (i = 0; i < puno; i++)
fprintf(Rfp, ",%i", pu[i].id);
fprintf(Rfp, "\n0");
for (i = 0; i < puno; i++)
fprintf(Rfp, ",%i", R[i]);
fprintf(Rfp, "\n");
iRowCounter = 0;
if (fnames.annealingtracerows == 0)
iRowLimit = 0;
else
iRowLimit = floor(anneal.iterations / fnames.annealingtracerows);
}
displayProgress2(" Main thermalAnnealing Section.\n");
rThreshold = costthresh;
costthresh = rThreshold * rStartDecMult;
rTemperature = 1;
uniform_int_distribution<int> int_range(0, puno - 1);
for (itime = 1; itime <= anneal.iterations; itime++)
{
// Choose random pu. If PU is set > 1 then that pu is fixed and cannot be changed.
ipu = int_range(rngEngine);
while (R[ipu] > 1) {
ipu = int_range(rngEngine);
}
itemp = R[ipu] == 1 ? -1 : 1; /* Add or Remove PU ? */
computeChangeScore(itime, ipu, spno, puno, pu, connections, spec, SM, SM_out, R, cm, itemp, change, reserve,
costthresh, tpf1, tpf2, (double)itime / (double)anneal.iterations, clumptype);
/* Need to calculate Appropriate temperature in isGoodChange or another function */
/* Upgrade temperature */
if (itime % anneal.Tlen == 0)
{
rTemperature = rTemperature * anneal.Tcool;
if (rTemperature > rStartDecThresh)
costthresh = rThreshold * rStartDecMult;
else
{
if (rTemperature < rEndDecThresh)
costthresh = rThreshold * rEndDecMult;
else
{
// map costthresh in the space between (rThreshold * rStartDecMult) and (rThreshold * rEndDecMult)
rThresholdMultiplier = (rTemperature - rEndDecThresh) / (rStartDecThresh - rEndDecThresh);
costthresh = (rEndDecMult + (rThresholdMultiplier * (rStartDecMult - rEndDecMult))) * rThreshold;
}
}
if (anneal.type == 3)
reduceTemperature(anneal);
else
anneal.temp = anneal.temp * anneal.Tcool;
displayProgress3("time %ld temp %f Complete %ld%% currval %.4f\n",
itime, anneal.temp, (int)itime * 100 / anneal.iterations, reserve.total);
} /* reduce temperature */
if (fnames.savesnapsteps && !(itime % fnames.savesnapfrequency))
{
tempname2 = savename + "_snap" + paddedRun + utils::intToPaddedString(++snapcount, 5) + getFileNameSuffix(fnames.savesnapchanges);
writeSolution(puno, R, pu, tempname2, fnames.savesnapsteps, fnames);
} /* Save snapshot every savesnapfreq timesteps */
iPreviousR = R[ipu];
iGoodChange = isGoodChange(change, anneal.temp, float_range, rngEngine);
if (iGoodChange)
{
++ichanges;
doChange(ipu, puno, R, reserve, change, pu, SM, SM_out, spec, connections, itemp, clumptype, logBuffer);
if (fnames.savesnapchanges && !(ichanges % fnames.savesnapfrequency))
{
tempname2 = savename + "_snap" + paddedRun + utils::intToPaddedString(++snapcount, 5) + getFileNameSuffix(fnames.savesnapchanges);
writeSolution(puno, R, pu, tempname2, fnames.savesnapchanges, fnames);
} /* Save snapshot every savesnapfreq changes */
} /* Good change has been made */
if (anneal.type == 3)
{
anneal.sum += reserve.total;
anneal.sum2 += reserve.total * reserve.total;
} /* Keep track of scores for averaging stuff */
if (verbosity > 4)
fprintf(fp, "%li,%li,%i,%li,%li,%i,%li,%f,%f,%f,%f,%f\n",
itime, ipu, pu[ipu].id, iPreviousR, itemp, R[ipu], iGoodChange, change.total, change.cost, change.connection, change.penalty, anneal.temp);
if (fnames.saveannealingtrace)
{
iRowCounter++;
if (iRowCounter > iRowLimit)
iRowCounter = 1;
if (iRowCounter == 1)
{
fprintf(Rfp, "%li", itime);
fprintf(ttfp, "%li,%f,%li,%f,%i,%f,%f,%f,%f",
itime, costthresh, iGoodChange, reserve.total,
reserve.pus, reserve.cost, reserve.connection, reserve.penalty, reserve.shortfall);
if (fProb1D == 1)
fprintf(ttfp, ",%f", reserve.probability1D);
if (fProb2D == 1)
fprintf(ttfp, ",%f", reserve.probability2D);
fprintf(ttfp, ",%li\n", ipu);
// iteration,threshold,dochange,total,pus,cost,connectivity,penalty,probability
for (i = 0; i < puno; i++)
fprintf(Rfp, ",%i", R[i]);
fprintf(Rfp, "\n");
}
}
} /* Run Through Annealing */
/** Post Processing **********/
if (aggexist)
ClearClumps(spno, spec, pu, SM, SM_out);
if (verbosity > 4)
fclose(fp);
if (fnames.saveannealingtrace)
{
fclose(ttfp);
fclose(Rfp);
}
} // thermalAnnealing
} // namespace marxan