-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
347 lines (287 loc) · 14.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
import sys, datetime, time,json,string
import numpy as np
from pathlib import Path
import torch
import torchvision
from PIL import Image,ImageEnhance
from jsonargparse import lazy_instance
from omegaconf import OmegaConf
import lightning.pytorch as pl
from lightning.pytorch.cli import LightningCLI
from lightning.pytorch.loggers import TensorBoardLogger
import argparse
from lightning.pytorch.callbacks import ModelCheckpoint, Callback, LearningRateMonitor
from lightning.pytorch.utilities.rank_zero import rank_zero_only,rank_zero_info
from functools import partial
from torch.utils.data import DataLoader, Dataset
from dpm.utils import instantiate_from_config
def worker_init_fn(_):
worker_info = torch.utils.data.get_worker_info()
dataset = worker_info.dataset
worker_id = worker_info.id
return np.random.seed(np.random.get_state()[1][0] + worker_id)
class WrappedDataset(Dataset):
"""Wraps an arbitrary object with __len__ and __getitem__ into a pytorch dataset"""
def __init__(self, dataset):
self.data = dataset
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
return self.data[idx]
class DataModuleFromConfig(pl.LightningDataModule):
def __init__(self, batch_size, train=None, validation=None, test=None, predict=None,collect_fn=None,
wrap=False, num_workers=None,pin_memory=True,prefetch_factor=4,shuffle_test_loader=False, use_worker_init_fn=False,
shuffle_val_dataloader=False):
super().__init__()
self.batch_size = batch_size
self.dataset_configs = dict()
self.num_workers = num_workers if num_workers is not None else batch_size * 2
self.pin_memory=pin_memory
self.prefetch_factor=prefetch_factor
self.use_worker_init_fn = use_worker_init_fn
self.collect_fn=instantiate_from_config(collect_fn).pad
self.shuffle_val=shuffle_val_dataloader
if train is not None:
self.dataset_configs["train"] = train
self.train_dataloader = self._train_dataloader
if validation is not None:
self.dataset_configs["validation"] = validation
self.val_dataloader = partial(self._val_dataloader, shuffle=shuffle_val_dataloader)
if test is not None:
self.dataset_configs["test"] = test
self.test_dataloader = partial(self._test_dataloader, shuffle=shuffle_test_loader)
if predict is not None:
self.dataset_configs["predict"] = predict
self.predict_dataloader = self._predict_dataloader
self.wrap = wrap
self.prepare_data()
self.setup()
def prepare_data(self):
for data_cfg in self.dataset_configs.values():
instantiate_from_config(data_cfg)
def setup(self, stage=None):
self.datasets = dict(
(k, instantiate_from_config(self.dataset_configs[k]))
for k in self.dataset_configs)
if self.wrap:
for k in self.datasets:
self.datasets[k] = WrappedDataset(self.datasets[k])
def _train_dataloader(self):
init_fn = None
return DataLoader(self.datasets["train"], batch_size=self.batch_size,
num_workers=self.num_workers, shuffle=True,
pin_memory=self.pin_memory,
worker_init_fn=init_fn,prefetch_factor=self.prefetch_factor,collate_fn=self.collect_fn)
def _val_dataloader(self, shuffle=False):
init_fn = None
return DataLoader(self.datasets["validation"],
batch_size=self.batch_size,
num_workers=self.num_workers,
pin_memory=self.pin_memory,
worker_init_fn=init_fn,
shuffle=self.shuffle_val,prefetch_factor=self.prefetch_factor,collate_fn=self.collect_fn)
def _test_dataloader(self, shuffle=False):
init_fn = None
return DataLoader(self.datasets["test"], batch_size=self.batch_size,
num_workers=self.num_workers, worker_init_fn=init_fn, shuffle=shuffle,pin_memory=True)
def _predict_dataloader(self, shuffle=False):
init_fn = None
return DataLoader(self.datasets["predict"], batch_size=self.batch_size,
num_workers=self.num_workers, worker_init_fn=init_fn)
class SetupCallback(Callback):
def __init__(self, now,logdir):
super().__init__()
self.logdir=Path(logdir)
self.now = now
self.ckptdir=self.logdir/'checkpoints'
def on_exception(self, trainer, pl_module):
if trainer.global_rank == 0:
print("Summoning checkpoint.")
ckpt_path = self.ckptdir / "last.ckpt"
trainer.save_checkpoint(str(ckpt_path))
def setup(self, trainer, pl_module):
if trainer.global_rank == 0:
# Create logdirs and save configs
self.logdir.mkdir(parents=True, exist_ok=True)
self.ckptdir.mkdir(parents=True, exist_ok=True)
class CUDACallback(Callback):
def on_train_epoch_start(self, trainer, pl_module):
# Reset the memory use counter
#torch.cuda.reset_peak_memory_stats(self.root_gpu(trainer))
torch.cuda.synchronize(self.root_gpu(trainer))
self.start_time = time.time()
def on_train_epoch_end(self, trainer, pl_module):
torch.cuda.synchronize(self.root_gpu(trainer))
max_memory = torch.cuda.max_memory_allocated(self.root_gpu(trainer)) / 2 ** 20
epoch_time = time.time() - self.start_time
max_memory = trainer.strategy.reduce(max_memory)
epoch_time = trainer.strategy.reduce(epoch_time)
rank_zero_info(f"Average Epoch time: {epoch_time:.2f} seconds")
rank_zero_info(f"Average Peak memory {max_memory:.2f}MiB")
def root_gpu(self, trainer):
return trainer.strategy.root_device.index
class Image_text_logger(Callback):
def __init__(self, save_dir,train_batch_frequency,val_batch_frequency, max_log,clamp=True, increase_log_steps=False,
rescale=True, disabled=False, log_on_batch_idx=False, log_first_step=False,
log_images_kwargs=None):
super().__init__()
self.save_dir=save_dir
self.rescale = rescale
self.train_batch_freq = train_batch_frequency
self.val_bacth_freq=val_batch_frequency
self.max_log = max_log
self.logger_log_images = {
TensorBoardLogger:self._testtube
}
self.log_steps = [2 ** n for n in range(int(np.log2(self.train_batch_freq)) + 1)]
if not increase_log_steps:
self.log_steps = [self.train_batch_freq]
self.clamp = clamp
self.disabled = disabled
self.log_on_batch_idx = log_on_batch_idx
self.log_images_kwargs = log_images_kwargs if log_images_kwargs else {}
self.log_first_step = log_first_step
@rank_zero_only
def _testtube(self, pl_module, data,batch_idx, split):
for k in data:
if k=="input_img":
name=f'{split}/{pl_module.current_epoch}/image'
grid = torchvision.utils.make_grid(data[k])
grid = (grid + 1.0) / 2.0 # -1,1 -> 0,1; c,h,
pl_module.logger.experiment.add_image(
name,grid,
pl_module.global_step)
elif k == 'gt_text':
name = f'{split}/{pl_module.current_epoch}/gt_text'
# 将所有句子使用 <br> 连接起来
all_text = '<br>'.join(data[k])
# 记录连接后的文本
pl_module.logger.experiment.add_text(name, all_text, pl_module.global_step)
elif k == 'gen_text':
name = f'{split}/{pl_module.current_epoch}/gen_text'
# 同样地,将所有句子使用 <br> 连接起来
all_text = '<br>'.join(data[k])
# 记录连接后的文本
pl_module.logger.experiment.add_text(name, all_text, pl_module.global_step)
@rank_zero_only
def log_local(self, split, data,
global_step, current_epoch, batch_idx):
root = Path(self.save_dir)/'result'/split
for k in data:
if k=="input_img":
grid = torchvision.utils.make_grid(data[k], nrow=4)
if self.rescale:
grid = (grid + 1.0) / 2.0 # -1,1 -> 0,1; c,h,w
grid = grid.transpose(0, 1).transpose(1, 2).squeeze(-1)
grid = grid.numpy()
grid = (grid * 255).astype(np.uint8)
filename = "gs-{:06}_e-{:06}_b-{:06}.png".format(
global_step,
current_epoch,
batch_idx)
path = root/k/filename
Path(path).parent.mkdir(parents=True, exist_ok=True)
image = Image.fromarray(grid)
image.save(path)
if k=="gt_text":
filename="gs-{:06}_e-{:06}_b-{:06}-gt.txt".format(
global_step,
current_epoch,
batch_idx)
path=root/k/filename
path.parent.mkdir(parents=True, exist_ok=True)
with open(path, 'w', encoding='utf-8') as file:
for sentence in data[k]:
file.write(sentence + '\n')
if k=="gen_text":
filename="gs-{:06}_e-{:06}_b-{:06}-gen.txt".format(
global_step,
current_epoch,
batch_idx)
path=root/k/filename
path.parent.mkdir(parents=True, exist_ok=True)
with open(path, 'w', encoding='utf-8') as file:
for sentence in data[k]:
file.write(sentence + '\n')
def log_img_and_text(self, pl_module, batch, batch_idx, split="train"):
check_idx = batch_idx if self.log_on_batch_idx else pl_module.global_step
if (self.check_frequency(check_idx,split) and # batch_idx % self.batch_freq == 0
hasattr(pl_module, "log_image_and_text") and
callable(pl_module.log_image_and_text) and
self.max_log > 0):
logger = type(pl_module.logger)
is_train = pl_module.training
if is_train:
pl_module.eval()
with torch.no_grad():
log = pl_module.log_image_and_text(batch, **self.log_images_kwargs)
for k in log:
if k=='input_img':
N = min(log[k].shape[0], self.max_log)
log[k] = log[k][:N]
if isinstance(log[k], torch.Tensor):
log[k] = log[k].detach().cpu()
if self.clamp:
log[k] = torch.clamp(log[k], -1., 1.)
else:
N = min(len(log[k]), self.max_log)
log[k] = log[k][:N]
data=log
self.log_local( split, data,
pl_module.global_step, pl_module.current_epoch, batch_idx)
logger_log_images = self.logger_log_images.get(logger, lambda *args, **kwargs: None)
logger_log_images(pl_module,data, pl_module.global_step, split)
if is_train:
pl_module.train()
def check_frequency(self, check_idx,split):
if split=='train':
if ((check_idx % self.train_batch_freq) == 0 or (check_idx in self.log_steps)) and (
check_idx > 0 or self.log_first_step):
try:
self.log_steps.pop(0)
except IndexError as e:
pass
return True
elif split=='val':
if ((check_idx % self.val_bacth_freq) == 0 or (check_idx in self.log_steps)) and (
check_idx > 0 or self.log_first_step):
try:
self.log_steps.pop(0)
except IndexError as e:
pass
return True
return False
def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx='train_dataloader'):
if not self.disabled and (pl_module.global_step > 0 or self.log_first_step):
self.log_img_and_text(pl_module, batch, batch_idx, split="train")
def on_validation_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx='val_dataloader'):
if not self.disabled and pl_module.global_step > 0:
self.log_img_and_text(pl_module, batch, batch_idx, split="val")
if hasattr(pl_module, 'calibrate_grad_norm'):
if (pl_module.calibrate_grad_norm and batch_idx % 25 == 0) and batch_idx > 0:
self.log_gradients(trainer, pl_module, batch_idx=batch_idx)
if __name__ == "__main__":
torch.set_float32_matmul_precision('high')
now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S")
logdir=Path('logs')
sys.path.append(Path.cwd())
img_logger_callback=Image_text_logger(save_dir=str(logdir/now),train_batch_frequency=200,val_batch_frequency=60,
max_log=4,log_on_batch_idx=True)
cuda_callback=CUDACallback()
lr_callback=LearningRateMonitor(logging_interval='step')
model_ckpt_callback=ModelCheckpoint(
dirpath=str(logdir/now/'checkpoints'),
monitor='monitor',
verbose= True,
filename='{epoch:02d}-{monitor:.2f}',
save_top_k=2,
mode='max',
save_last=True
)
cli=LightningCLI(
save_config_kwargs={"overwrite": True},
trainer_defaults={
'logger':lazy_instance(TensorBoardLogger,save_dir=logdir,name=now,version=0),
'callbacks':[img_logger_callback,cuda_callback,lr_callback,model_ckpt_callback]
}
)