-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathtrain_temporal.py
454 lines (415 loc) · 20.7 KB
/
train_temporal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
import os
import torch
import torch.distributed as dist
import torch.nn as nn
import pickle
from tqdm import tqdm
import numpy as np
from loguru import logger
from torch.utils.tensorboard import SummaryWriter
from torch.nn import SyncBatchNorm
from modules.mesh_encoder import PCAGarmentEncoderSeg, PCALBSGarmentUseSegEncoderSeg, PCALBSGarmentUseSegEncoderSegMGN
from utils.dataloader import SeqPointSMPLDataset, SeqPointSMPL_collate_fn
from utils.config import args, cfg
from utils import train_utils
from utils.train_utils import merge_results, collect_decisions
from smplx import build_layer
from smplx import parse_args, batch_rodrigues
from smplx import temporal_loss_PCA, temporal_loss_PCA_LBS
def build(log_to_file=True, dont_load_train=False):
#-------------------------------- INIT --------------------------------#
if args.launcher == None:
args.dist_train = False
else:
args.batch_size, args.local_rank = getattr(train_utils, 'init_dist_%s' % args.launcher)(
args.batch_size, args.tcp_port, args.local_rank, backend='nccl'
)
args.dist_train = True
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir, exist_ok = True)
tmp_dir = os.path.join(args.output_dir, 'tmp')
if not os.path.exists(tmp_dir):
os.makedirs(tmp_dir, exist_ok = True)
if args.local_rank == 0 and log_to_file:
logger.add(os.path.join(args.output_dir, 'log.txt'))
ckpt_dir = os.path.join(args.output_dir, 'ckpt')
if not os.path.exists(ckpt_dir):
os.makedirs(ckpt_dir, exist_ok = True)
vis_dir = os.path.join(args.output_dir, 'vis')
if not os.path.exists(vis_dir):
os.makedirs(vis_dir, exist_ok = True)
gpu_list = os.environ['CUDA_VISIBLE_DEVICES'] if 'CUDA_VISIBLE_DEVICES' in os.environ.keys() else 'ALL'
if args.local_rank == 0:
logger.info('CUDA_VISIBLE_DEVICES=%s' % gpu_list)
if args.dist_train and args.local_rank == 0:
total_gpus = dist.get_world_size()
logger.info('Total Batch Size: {} x {} = {}'.format(total_gpus, args.batch_size, total_gpus * args.batch_size))
if args.local_rank == 0:
for key, val in vars(args).items():
logger.info('{:16} {}'.format(key, val))
#-------------------------------- BUILDING BODY MODEL --------------------------------#
if args.local_rank == 0:
logger.info("Building Body Model...")
body_exp_cfg = parse_args()
model_path = body_exp_cfg.body_model.folder
body_model = build_layer(model_path, **body_exp_cfg.body_model)
body_model = body_model.cuda()
body_exp_cfg.body_model.gender = 'male'
body_model_male = build_layer(model_path, **body_exp_cfg.body_model)
body_exp_cfg.body_model.gender = 'female'
body_model_female = build_layer(model_path, **body_exp_cfg.body_model)
body_exp_cfg.body_model.gender = 'neutral'
body_model_neutral = build_layer(model_path, **body_exp_cfg.body_model)
#-------------------------------- BUILDING DATALOADER --------------------------------#
def worker_init_fn(worker_id):
np.random.seed(np.random.get_state()[1][0] + worker_id)
cur_dataset = SeqPointSMPLDataset
if not dont_load_train:
if args.local_rank == 0:
logger.info("Building Train DataLoader...")
train_dataset = cur_dataset(cfg.NETWORK.NPOINTS, cfg.DATASET.TRAIN_F_LIST, cfg.DATASET.SMPL_PARAM_PREFIX,
args.T, is_train=True, garment_template_prefix=cfg.DATASET.GARMENT_TEMPLATE_T_POSE_PREFIX,
body_model_dict={'male': body_model_male, 'female': body_model_female, 'neutral': body_model_neutral})
if args.dist_train:
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset, shuffle=True)
else:
train_sampler = None
train_dataloader = torch.utils.data.DataLoader(dataset = train_dataset, batch_size = args.batch_size, collate_fn = SeqPointSMPL_collate_fn,
shuffle = (train_sampler is None), num_workers = args.num_workers,
pin_memory = True, drop_last = True, sampler = train_sampler, timeout = 0,
worker_init_fn=worker_init_fn)
else:
train_dataloader = None
if args.local_rank == 0:
logger.info("Building Eval DataLoader...")
eval_dataset = cur_dataset(cfg.NETWORK.NPOINTS, cfg.DATASET.EVAL_F_LIST, cfg.DATASET.SMPL_PARAM_PREFIX,
args.T, is_train=False, garment_template_prefix=cfg.DATASET.GARMENT_TEMPLATE_T_POSE_PREFIX,
body_model_dict={'male': body_model_male, 'female': body_model_female, 'neutral': body_model_neutral})
if args.dist_train:
rank, world_size = train_utils.get_dist_info()
eval_sampler = train_utils.DistributedSampler(eval_dataset, world_size, rank, shuffle=False)
else:
eval_sampler = None
eval_dataloader = torch.utils.data.DataLoader(dataset = eval_dataset, batch_size = args.batch_size, collate_fn = SeqPointSMPL_collate_fn,
shuffle = False, num_workers = args.num_workers,
pin_memory = True, drop_last = False, sampler = eval_sampler, timeout = 0)
#-------------------------------- BUILDING MODEL --------------------------------#
if args.local_rank == 0:
logger.info("Building Model...")
if args.MGN:
model = PCALBSGarmentUseSegEncoderSegMGN(cfg = cfg, args = args).cuda()
elif args.GarmentPCA:
model = PCAGarmentEncoderSeg(cfg = cfg, args = args).cuda()
elif args.GarmentPCALBS:
model = PCALBSGarmentUseSegEncoderSeg(cfg = cfg, args = args).cuda()
if args.syncbn:
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).cuda()
#-------------------------------- BUILDING OPTIMIZER --------------------------------#
if args.local_rank == 0:
logger.info("Building Optimizer...")
optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=args.lr)
#-------------------------------- BUILD SCHEDULER --------------------------------#
if args.local_rank == 0:
logger.info("Building Scheduler...")
scheduler = None
if args.lr_sche:
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', patience = 8)
#-------------------------------- LOADING CKPT --------------------------------#
epoch = -1
other_state = {'best_v_l2': 10086}
ckpt_fname = os.path.join(ckpt_dir, args.ckpt_name)
if os.path.exists(ckpt_fname):
if args.local_rank == 0:
logger.info("Loading CKPT from {}".format(ckpt_fname))
if args.GarmentPCA or args.GarmentPCALBS:
PCA_params = list(map(lambda x: x[1], filter(lambda p: p[1].requires_grad and p[0].startswith('PCA_garment_encoder'), model.named_parameters())))
LBS_params = list(map(lambda x: x[1], filter(lambda p: p[1].requires_grad and (not p[0].startswith('PCA_garment_encoder')), model.named_parameters())))
if args.fix_PCA:
for p in PCA_params:
p.requires_grad = False
optimizer = torch.optim.Adam(LBS_params, lr=args.lr)
else:
optimizer = torch.optim.Adam(
[{'params': PCA_params},
{'params': LBS_params},],
lr = args.lr
)
else:
optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=args.lr)
epoch, other_state = train_utils.load_params_with_optimizer_otherstate(model, ckpt_fname, to_cpu=args.dist_train,
optimizer=optimizer, logger=logger)
elif args.pretrained_model is not None and os.path.exists(args.pretrained_model):
if args.local_rank == 0:
logger.info("Loading pretrained CKPT from {}".format(args.pretrained_model))
train_utils.load_pretrained_model(model, args.pretrained_model, to_cpu=args.dist_train, logger=logger)
optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=args.lr)
elif args.GarmentPCA_pretrain is not None and os.path.exists(args.GarmentPCA_pretrain):
if args.local_rank == 0:
logger.info("Loading pretrained CKPT from {}".format(args.GarmentPCA_pretrain))
train_utils.load_pretrained_model(model, args.GarmentPCA_pretrain, to_cpu=args.dist_train, logger=logger)
PCA_params = list(map(lambda x: x[1], filter(lambda p: p[1].requires_grad and p[0].startswith('PCA_garment_encoder'), model.named_parameters())))
LBS_params = list(map(lambda x: x[1], filter(lambda p: p[1].requires_grad and (not p[0].startswith('PCA_garment_encoder')), model.named_parameters())))
if args.fix_PCA:
logger.info("Fixing PCA parameters.")
for p in PCA_params:
p.requires_grad = False
optimizer = torch.optim.Adam(LBS_params, lr=args.lr)
else:
optimizer = torch.optim.Adam(
[{'params': PCA_params},
{'params': LBS_params},],
lr = args.lr
)
#-------------------------------- ENABLE DATAPARALLEL --------------------------------#
model.train()
if args.dist_train:
# model = SyncBatchNorm.convert_sync_batchnorm(model)
if args.local_rank == 0:
logger.info("Enabling Distributed Training...")
model = nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank % torch.cuda.device_count()],
find_unused_parameters=True)
#-------------------------------- ADD A WRITER --------------------------------#
writer = None
if args.local_rank == 0:
logger.info("Building Writer...")
writer = SummaryWriter(log_dir = os.path.join(args.output_dir, 'summary'))
from utils.train_utils import merge_results, collect_decisions
#-------------------------------- PACK AND RETURN --------------------------------#
other_info = {
'output_dir': args.output_dir,
'ckpt_dir': ckpt_dir,
'ckpt_fname': ckpt_fname,
'body_model_male': body_model_male,
'body_model_female': body_model_female,
}
return logger, train_dataloader, eval_dataloader, model, optimizer, body_model, \
epoch, other_state, other_info, writer, scheduler
acc_list = [
'total_loss_acc',
'sem_seg_loss_acc',
'garment_l2_loss_acc',
'interpenetration_loss_acc',
'garment_lap_loss_acc',
'lbs_garment_l2_loss_acc',
'lbs_garment_lap_loss_acc',
'lbs_interpenetration_loss_acc',
'garment_msre_acc',
'lbs_garment_msre_acc',
'garment_pca_coeff_l2_acc',
'only_lbs_garment_msre_acc',
'temporal_constraint_loss_acc',
'acceleration_error_acc',
'only_lbs_acceleration_error_acc'
]
def train_one_epoch_PCA(logger, dataloader, model, optimizer, body_model, writer, epoch, scheduler):
np.random.seed()
model.train()
if args.fix_PCA:
def set_bn_eval(m):
classname = m.__class__.__name__
if classname.find('BatchNorm') != -1:
# logger.info("Fixing BN: {}".format(classname))
m.eval()
model.module.PCA_garment_encoder.apply(set_bn_eval)
if args.local_rank == 0:
pbar = tqdm(total = len(dataloader), dynamic_ncols = True)
acc_dict = {}
for a in acc_list:
acc_dict[a] = 0
for i_iter, inputs in enumerate(dataloader):
optimizer.zero_grad()
output_dict = model(inputs['pcd_torch'].cuda(), body_model, inputs)
if args.GarmentPCA:
loss_dict = temporal_loss_PCA(output_dict, inputs, body_model, args)
elif args.GarmentPCALBS:
loss_dict = temporal_loss_PCA_LBS(output_dict, inputs, body_model, args)
else:
raise NotImplementedError
total_loss = loss_dict['total_loss']
if torch.isnan(total_loss):
import pdb; pdb.set_trace()
total_loss.backward()
optimizer.step()
if args.local_rank == 0:
try:
cur_lr = float(optimizer.lr)
except:
try:
cur_lr = optimizer.param_groups[1]['lr']
except:
cur_lr = optimizer.param_groups[0]['lr']
tqdm_log_dict = {'lr': cur_lr, 'l': total_loss.item()}
if args.only_seg:
tqdm_log_dict['seg'] = loss_dict['sem_seg_loss'].item()
elif args.GarmentPCA:
tqdm_log_dict['pca_msre'] = loss_dict['garment_msre'].item()
if args.GarmentPCALBS:
tqdm_log_dict['lbs_msre'] = loss_dict['lbs_garment_msre'].item()
tqdm_log_dict['o_msre'] = loss_dict['only_lbs_garment_msre'].item()
pbar.set_postfix(tqdm_log_dict)
pbar.update(1)
for i, (k, v) in enumerate(loss_dict.items()):
try:
writer.add_scalar('Train/{}_{}'.format(str(i).zfill(2), k), v.item(), epoch * len(dataloader) + i_iter)
except:
pass
writer.add_scalar('LR', cur_lr, epoch * len(dataloader) + i_iter)
for k, v in loss_dict.items():
try:
acc_dict[k + '_acc'] += v.item()
except:
pass
if scheduler is not None:
scheduler.step(acc_dict['total_loss_acc'] / len(dataloader))
merged_dict = merge_results(acc_dict, os.path.join(args.output_dir, 'tmp'))
if args.local_rank == 0:
pbar.close()
for k, v in merged_dict.items():
if v == 0:
continue
lambda_k = k[:-4] + '_lambda'
if lambda_k in args:
logger.info("Average {}: {} * {}".format(k, v / len(dataloader), getattr(args, lambda_k)))
else:
logger.info("Average {}: {}".format(k, v / len(dataloader)))
def eval_one_epoch_PCA(logger, dataloader, model, body_model, writer, epoch):
np.random.seed()
model.eval()
if args.local_rank == 0:
pbar = tqdm(total = len(dataloader), dynamic_ncols = True)
v_l2_loss_acc = 0
acc_dict = {}
for a in acc_list:
acc_dict[a] = 0
for i_iter, inputs in enumerate(dataloader):
with torch.no_grad():
output_dict = model(inputs['pcd_torch'].cuda(), body_model, inputs)
# time_acc += output_dict['lbs_time']
if args.GarmentPCA:
loss_dict = temporal_loss_PCA(output_dict, inputs, body_model, args)
elif args.GarmentPCALBS:
loss_dict = temporal_loss_PCA_LBS(output_dict, inputs, body_model, args)
else:
raise NotImplementedError
for k, v in loss_dict.items():
try:
acc_dict[k + '_acc'] += v.item()
except:
pass
if args.GarmentPCA:
if args.only_seg:
v_sqrt_l2_loss = loss_dict['sem_seg_loss']
else:
v_sqrt_l2_loss = loss_dict['garment_msre']
elif args.GarmentPCALBS:
v_sqrt_l2_loss = loss_dict['lbs_garment_msre']
else:
raise NotImplementedError
if args.local_rank == 0:
if args.only_seg:
pbar_postfix_dict = {
'sem_seg': loss_dict['sem_seg_loss'].item(),
}
elif args.GarmentPCA:
pbar_postfix_dict = {
'pca_msre': loss_dict['garment_msre'].item(),
}
else:
pbar_postfix_dict = {}
if args.GarmentPCALBS:
pbar_postfix_dict['lbs_msre'] = loss_dict['lbs_garment_msre'].item()
pbar_postfix_dict['o_msre'] = loss_dict['only_lbs_garment_msre'].item()
pbar.set_postfix(pbar_postfix_dict)
pbar.update(1)
writer.add_scalar('Eval/01_v_sqrt_l2_loss', v_sqrt_l2_loss.item(), epoch * len(dataloader) + i_iter)
v_l2_loss_acc += v_sqrt_l2_loss.item()
merged_dict = merge_results(acc_dict, os.path.join(args.output_dir, 'tmp'))
if args.local_rank == 0:
pbar.close()
# logger.info("Average V L2 Loss: {}".format(v_l2_loss_acc / len(dataloader)))
for k, v in merged_dict.items():
if v == 0:
continue
lambda_k = k[:-4] + '_lambda'
if lambda_k in args:
logger.info("Average {}: {} * {}".format(k, v / len(dataloader), getattr(args, lambda_k)))
else:
logger.info("Average {}: {}".format(k, v / len(dataloader)))
if args.GarmentPCA:
if args.only_seg:
return merged_dict['sem_seg_loss_acc'] / len(dataloader)
else:
return merged_dict['garment_msre_acc'] / len(dataloader)
elif args.GarmentPCALBS:
return merged_dict['lbs_garment_msre_acc'] / len(dataloader)
else:
raise NotImplementedError
else:
return None
def save_ckpt(logger, model, optimizer, epoch, other_state, ckpt_fname):
if args.local_rank == 0:
states = train_utils.checkpoint_state(model, optimizer, epoch, other_state)
train_utils.save_checkpoint(states, ckpt_fname)
logger.info("Saved ckpt to {}".format(ckpt_fname))
def main_PCA():
logger, train_dataloader, eval_dataloader, model, optimizer, body_model, \
epoch, other_state, other_info, writer, scheduler = build()
while(True):
epoch += 1
if epoch >= args.epoch_num:
break
if args.local_rank == 0:
logger.info("TRAIN EPOCH {}".format(epoch))
train_one_epoch_PCA(logger, train_dataloader, model, optimizer, body_model, writer, epoch, scheduler)
if args.local_rank == 0:
logger.info("FINISH TRAIN EPOCH {}".format(epoch))
logger.info("This is {}".format(args.output_dir))
if epoch % 1 == 0 or epoch == args.epoch_num - 1:
if args.local_rank == 0:
logger.info("EVAL EPOCH {}".format(epoch))
curr_v_l2 = eval_one_epoch_PCA(logger, eval_dataloader, model, body_model, writer, epoch)
logger.info("FINISH EVAL EPOCH {}".format(epoch))
if curr_v_l2 < other_state['best_v_l2']:
other_state['best_v_l2'] = curr_v_l2
save_ckpt(logger, model, optimizer, epoch, other_state, other_info['ckpt_fname'])
else:
_ = eval_one_epoch_PCA(logger, eval_dataloader, model, body_model, writer, epoch)
if args.local_rank == 0:
logger.info("The best eval score: {}".format(other_state['best_v_l2']))
def main_PCA_eval():
logger, train_dataloader, eval_dataloader, model, optimizer, body_model, \
epoch, other_state, other_info, writer, scheduler = build(dont_load_train=True)
while(True):
epoch += 1
if args.local_rank == 0:
logger.info("EVAL EPOCH {}".format(epoch))
curr_v_l2 = eval_one_epoch_PCA(logger, eval_dataloader, model, body_model, writer, epoch)
logger.info("FINISH EVAL EPOCH {}".format(epoch))
else:
_ = eval_one_epoch_PCA(logger, eval_dataloader, model, body_model, writer, epoch)
break
from utils.post_processing import process_single_frame
def eval_one_epoch_PCA_temporal_aggregation(logger, dataloader, model, body_model, writer, epoch):
model.eval()
if args.local_rank == 0:
pbar = tqdm(total = len(dataloader), dynamic_ncols = True)
v_l2_loss_acc = 0
err_dict = {'MGN': args.MGN}
for i_iter, inputs in enumerate(dataloader):
with torch.no_grad():
output_dict = model(inputs['pcd_torch'].cuda(), body_model, inputs)
loss_dict = temporal_loss_PCA_LBS(output_dict, inputs, body_model, args)
for ith in range(inputs['pose_np'].shape[0]):
for frame in range(inputs['pose_np'].shape[1]):
process_single_frame(model, inputs, output_dict, ith, frame, body_model, save=True, post_process=False)
cur_seq = inputs['T_pcd_flist'][ith][frame].split('/')[-3]
cur_frame = inputs['T_pcd_flist'][ith][frame].split('/')[-2]
if cur_seq not in err_dict:
err_dict[cur_seq] = {}
err_dict[cur_seq][cur_frame] = loss_dict['lbs_garment_msre_list'][ith][frame].item()
pbar.update(1)
if __name__ == '__main__':
if args.only_eval:
main_PCA_eval()
else:
main_PCA()