-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_w2v2conformer.py
172 lines (148 loc) · 5.39 KB
/
train_w2v2conformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import os
import argparse
from model import Wav2Vec2ConformerForCantonese
from data import Wav2Vec2DataCollatorCTCWithPadding
from datasets import load_metric, load_from_disk
import time
from transformers import (
Wav2Vec2CTCTokenizer,
TrainingArguments,
AddedToken,
Trainer,
Wav2Vec2Processor,
Wav2Vec2FeatureExtractor,
)
import numpy as np
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
wer_metric = load_metric("wer")
def train(model_id: str, dataset: str, output_dir: str):
# load dataset
ds = load_from_disk(dataset)
# load tokenizer
tokenizer = Wav2Vec2CTCTokenizer(
"vocab.json", unk_token="[UNK]", pad_token="[PAD]", word_delimiter_token="|"
)
tone_tokenizer = Wav2Vec2CTCTokenizer(
"tone_vocab.json",
unk_token="[UNK]",
pad_token="[PAD]",
word_delimiter_token="|",
)
# fix token splitting problem
for key in tokenizer.get_vocab().keys():
if key not in tokenizer.special_tokens_map.values():
idx = tokenizer.get_vocab()[key]
tokenizer._added_tokens_decoder[idx] = AddedToken(
key, lstrip=False, rstrip=False
)
for key in tone_tokenizer.get_vocab().keys():
if key not in tone_tokenizer.special_tokens_map.values():
idx = tone_tokenizer.get_vocab()[key]
tone_tokenizer._added_tokens_decoder[idx] = AddedToken(
key, lstrip=False, rstrip=False
)
# load processor
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_id)
processor = Wav2Vec2Processor(
feature_extractor=feature_extractor, tokenizer=tokenizer
)
def prepare_dataset(batch):
audio = batch["audio"]
batch["input_values"] = processor(
audio["array"], sampling_rate=audio["sampling_rate"]
).input_values[0]
batch["input_lengths"] = len(batch["input_values"])
batch["jyutping_labels"] = processor(text=batch["jyutping"]).input_ids
batch["tone_labels"] = tone_tokenizer.encode(text=batch["tone"])
return batch
ds = ds.map(prepare_dataset, num_proc=16)
# load model
model = Wav2Vec2ConformerForCantonese.from_pretrained(
model_id,
ctc_loss_reduction="mean",
pad_token_id=processor.tokenizer.pad_token_id,
vocab_size=len(processor.tokenizer),
)
model.config.update(
{
"vocab_size": len(tokenizer),
"tone_vocab_size": len(tone_tokenizer),
}
)
data_collator = Wav2Vec2DataCollatorCTCWithPadding(
processor=processor, padding=True
)
tone_tokenizer = Wav2Vec2CTCTokenizer(
"tone_vocab.json",
unk_token="[UNK]",
pad_token="[PAD]",
word_delimiter_token="|",
)
def compute_metrics(pred):
jyutping_logits = pred.predictions[0]
tone_logits = pred.predictions[1]
jyutping_pred_ids = np.argmax(jyutping_logits, axis=-1)
tone_pred_ids = np.argmax(tone_logits, axis=-1)
# replace -100 with padding
pred.label_ids[0][pred.label_ids == -100] = processor.tokenizer.pad_token_id
pred.label_ids[1][pred.label_ids == -100] = processor.tokenizer.pad_token_id
jyutping_pred_str = processor.batch_decode(jyutping_pred_ids)
tone_pred_str = tone_tokenizer.batch_decode(tone_pred_ids)
# we do not want to group tokens when computing the metrics
jyutping_label_str = processor.batch_decode(
pred.label_ids[0], group_tokens=False
)
tone_label_str = tone_tokenizer.batch_decode(
pred.label_ids[1], group_tokens=False
)
jyutping_wer = wer_metric.compute(
predictions=jyutping_pred_str, references=jyutping_label_str
)
tone_wer = wer_metric.compute(
predictions=tone_pred_str, references=tone_label_str
)
return {"per": jyutping_wer, "ter": tone_wer}
training_args = TrainingArguments(
output_dir=output_dir,
label_names=["jyutping_labels", "tone_labels"],
group_by_length=True,
per_device_train_batch_size=128,
per_device_eval_batch_size=64,
gradient_accumulation_steps=1,
eval_strategy="steps",
num_train_epochs=30,
bf16=True,
gradient_checkpointing=True,
overwrite_output_dir=True, # set to False to continue training
save_steps=1000,
eval_steps=1000,
logging_steps=100,
learning_rate=5e-4,
weight_decay=0.005,
warmup_steps=1000,
save_total_limit=2,
load_best_model_at_end=True,
metric_for_best_model="per",
greater_is_better=False,
report_to="wandb",
run_name="wav2vec2-yue" + time.strftime("%Y-%m-%d-%H-%M-%S"),
)
trainer = Trainer(
model=model,
data_collator=data_collator,
args=training_args,
compute_metrics=compute_metrics,
train_dataset=ds["train"],
eval_dataset=ds["test"],
processing_class=processor,
)
trainer.train()
if __name__ == "__main__":
args = argparse.ArgumentParser()
args.add_argument("model_id", type=str)
args.add_argument(
"dataset", type=str
) # /home/pj24001684/ku40000295/jc/projects/usm/dataset_emo_jyutping
args.add_argument("--output_dir", type=str, default="checkpoints")
args = args.parse_args()
train(args.model_id, args.dataset, args.output_dir)