-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathdocker-compose-mutagen.yml
318 lines (294 loc) · 9.61 KB
/
docker-compose-mutagen.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
# supplementary docker-compose file
version: "3.7"
services:
#blazorboilerplate:
# build:
# context: frontend
# # the below path is relative to the build context
# dockerfile: ./src/Utils/Docker/Dockerfile
# ports:
# - 54415:80
# - 54443:443
# depends_on:
# - sqlserver
# - controller
# - redis
# environment:
# - ASPNETCORE_ENVIRONMENT=Development #Consider changing this in Production
# - Serilog__MinimumLevel__Default=Debug #Consider changing this in Production
# - ConnectionStrings__DefaultConnection=Server=sqlserver;Database=blazor_boilerplate;Trusted_Connection=True;MultipleActiveResultSets=true;User=sa;Password=yourVeryStrong(!)Password;Integrated Security=false;Encrypt=False;
# - BlazorBoilerplate__UseSqlServer=true
# - BlazorBoilerplate__ApplicationUrl=blazorboilerplate
# - BlazorBoilerplate__IS4ApplicationUrl=blazorboilerplate
# - BlazorBoilerplate__CertificatePassword=Admin123
# - ASPNETCORE_URLS=https://+:443;http://+80
# - ASPNETCORE_Kestrel__Certificates__Default__Password=Admin123
# - ASPNETCORE_Kestrel__Certificates__Default__Path=aspnetapp.pfx
# - CONTROLLER_SERVICE_HOST=controller
# - CONTROLLER_SERVICE_PORT=5001
# - REDIS_SERVICE_HOST=redis
# - REDIS_SERVICE_PORT=6379
# - CONTROLLER_DATASET_FOLDER_PATH=/app/app-data/datasets
# - REGISTRATION_ALLOWED=false
# restart: on-failure
# volumes:
# shared volumes between frontend and controller
# - datasets:/app/app-data/datasets
# - training:/app/app-data/training
# - training-autokeras:/app/app-data/training/autokeras
# - training-mljar:/app/app-data/training/mljar
# - training-sklearn:/app/app-data/training/sklearn
# - training-flaml:/app/app-data/training/flaml
# - training-gluon:/app/app-data/training/gluon
#- training-autocve:/app/app-data/training/autocve
# - training-pytorch:/app/app-data/training/pytorch
#- training-alphad3m:/app/app-data/training/alphad3m
#- training-mcfly:/app/app-data/training/mcfly
# - training-evalml:/app/app-data/training/evalml
# - training-pycaret:/app/app-data/training/pycaret
# - training-tpot:/app/app-data/training/tpot
# extra_hosts:
# - "docker.host.internal:host-gateway"
sqlserver:
image: mcr.microsoft.com/azure-sql-edge:latest
volumes:
- dbdata:/var/opt/mssql
environment:
- MSSQL_SA_PASSWORD=yourVeryStrong(!)Password
- ACCEPT_EULA=Y
ports:
- 1533:1433 #expose port, so can connect to it using host: 'localhost,1533' | user: sa, password: yourVeryStrong(!)Password
redis:
image: "redis:alpine"
volumes:
- redisdata:/data
- redisdata:/var/lib/redis
- redisdata:/usr/local/etc/redis/redis.conf
ports:
- "6379:6379"
# sometimes when building the controller it does not copy the contents of the datasets folder.
# This is probably a caching docker caching issue, which can be fixed with:
# 'make clean-hard'
controller:
build:
context: ./
dockerfile: ./controller/Dockerfile
container_name: controller
depends_on:
- mongo
# we map the port of the controller to the host.
# This way we can either connect locally with localhost:5001
# or from a docker container that accesses host.docker.internal:5001
ports:
- "5001:5001"
environment:
# The environment variables are set manually here in docker-compose.
# But in kubernetes the environment variables are set as <SERVICE_NAME>_SERVICE_HOST and <SERVICE_NAME>_SERVICE_PORT
# Therefore the services must be named accordingly in the kubernetes files.
- AUTOKERAS_SERVICE_HOST=autokeras
- AUTOKERAS_SERVICE_PORT=50052
- MLJAR_SERVICE_HOST=mljar
- MLJAR_SERVICE_PORT=50053
#- MCFLY_SERVICE_HOST=mcfly
#- MCFLY_SERVICE_PORT=50054
- SKLEARN_SERVICE_HOST=sklearn
- SKLEARN_SERVICE_PORT=50055
- FLAML_SERVICE_HOST=flaml
- FLAML_SERVICE_PORT=50056
- AUTOGLUON_SERVICE_HOST=gluon
- AUTOGLUON_SERVICE_PORT=50057
#- AUTOCVE_SERVICE_HOST=autocve
#- AUTOCVE_SERVICE_PORT=50058
- PYTORCH_SERVICE_HOST=pytorch
- PYTORCH_SERVICE_PORT=50059
#- ALPHAD3M_SERVICE_HOST=alphad3m
#- ALPHAD3M_SERVICE_PORT=50060
- EVALML_SERVICE_HOST=evalml
- EVALML_SERVICE_PORT=50062
- PYCARET_SERVICE_HOST=pycaret
- PYCARET_SERVICE_PORT=50063
- TPOT_SERVICE_HOST=tpot
- TPOT_SERVICE_PORT=50064
- PERSISTENCE_LOGGING_LEVEL=DEBUG
- SERVER_LOGGING_LEVEL=DEBUG
- ONTOLOGY_LOGGING_LEVEL=DEBUG
- BLACKBOARD_LOGGING_LEVEL=DEBUG
- WIN_DEV_MACHINE=NO
volumes:
- datasets:/app/app-data/datasets
- training:/app/app-data/training
- training-autokeras:/app/app-data/training/autokeras
- training-mljar:/app/app-data/training/mljar
- training-sklearn:/app/app-data/training/sklearn
- training-flaml:/app/app-data/training/flaml
- training-gluon:/app/app-data/training/gluon
#- training-autocve:/app/app-data/training/autocve
- training-pytorch:/app/app-data/training/pytorch
#- training-alphad3m:/app/app-data/training/alphad3m
#- training-mcfly:/app/app-data/training/mcfly
- training-evalml:/app/app-data/training/evalml
- training-pycaret:/app/app-data/training/pycaret
- training-tpot:/app/app-data/training/tpot
mongo:
image: mongo
container_name: mongo
ports:
- "27017:27017"
# limit log verbosity
command: --quiet --logpath /dev/null
environment:
MONGO_INITDB_ROOT_USERNAME: root
MONGO_INITDB_ROOT_PASSWORD: example
volumes:
- mongodata:/data/configdb
- mongodata:/data/db
# adapters do not need to be available from the host machine -> no port mappings
autokeras:
build:
context: ./adapters
dockerfile: ./AutoKeras/Dockerfile
container_name: autokeras
environment:
- GRPC_SERVER_PORT=50052
volumes:
- datasets:/app/app-data/datasets
- training-autokeras:/app/app-data/training
mljar:
build:
context: ./adapters
dockerfile: ./MLJAR/Dockerfile
container_name: mljar
environment:
- GRPC_SERVER_PORT=50053
volumes:
- datasets:/app/app-data/datasets
- training-mljar:/app/app-data/training
#mcfly:
# build:
# context: ./adapters
# dockerfile: ./Mcfly/Dockerfile
# container_name: mcfly
# environment:
# - GRPC_SERVER_PORT=50054
# volumes:
# - datasets:/app/app-data/datasets
# - training-mcfly:/app/app-data/training
sklearn:
build:
context: ./adapters
dockerfile: ./AutoSklearn/Dockerfile
container_name: sklearn
environment:
- GRPC_SERVER_PORT=50055
volumes:
- datasets:/app/app-data/datasets
- training-sklearn:/app/app-data/training
flaml:
build:
context: ./adapters
dockerfile: ./FLAML/Dockerfile
container_name: flaml
environment:
- GRPC_SERVER_PORT=50056
volumes:
- datasets:/app/app-data/datasets
- training-flaml:/app/app-data/training
gluon:
build:
context: ./adapters
dockerfile: ./AutoGluon/Dockerfile
container_name: gluon
environment:
- GRPC_SERVER_PORT=50057
volumes:
- datasets:/app/app-data/datasets
- training-gluon:/app/app-data/training
#autocve:
# build:
# context: ./adapters
# dockerfile: ./AutoCVE/Dockerfile
# container_name: autocve
# environment:
# - GRPC_SERVER_PORT=50058
# volumes:
# - datasets:/app/app-data/datasets
# - training-autocve:/app/app-data/training
pytorch:
build:
context: ./adapters
dockerfile: ./AutoPytorch/Dockerfile
container_name: pytorch
environment:
- GRPC_SERVER_PORT=50059
volumes:
- datasets:/app/app-data/datasets
- training-pytorch:/app/app-data/training
#alphad3m:
# build:
# context: ./adapters
# dockerfile: ./AlphaD3M/Dockerfile
# container_name: alphad3m
# environment:
# - GRPC_SERVER_PORT=50060
# volumes:
# - datasets:/app/app-data/datasets
# - training-alphad3m:/app/app-data/training
evalml:
build:
context: ./adapters
dockerfile: ./EvalML/Dockerfile
container_name: evalml
environment:
- GRPC_SERVER_PORT=50062
volumes:
- datasets:/app/app-data/datasets
- training-evalml:/app/app-data/training
pycaret:
build:
context: ./adapters
dockerfile: ./PyCaret/Dockerfile
container_name: pycaret
environment:
- GRPC_SERVER_PORT=50063
volumes:
- datasets:/app/app-data/datasets
- training-pycaret:/app/app-data/training
tpot:
build:
context: ./adapters
dockerfile: ./TPOT/Dockerfile
container_name: tpot
environment:
- GRPC_SERVER_PORT=50064
volumes:
- datasets:/app/app-data/datasets
- training-tpot:/app/app-data/training
volumes:
datasets: # shared volume between controller, adapters and frontend/dummy to transfer datasets
# shared volumes between controller and adapters to transfer training files e.g. *.zip file
training-autokeras:
training-sklearn:
training-flaml:
training-gluon:
training-pytorch:
#training-autocve:
training-mljar:
#training-alphad3m:
training-mcfly:
training-evalml:
training-pycaret:
training-tpot:
# shared volume between controller and frontend / dummy to transfer training
training:
mongodata:
dbdata:
redisdata:
x-mutagen:
sync:
defaults:
ignore:
vcs: true
datasets:
alpha: "./mutagen_datasets"
beta: "volume://datasets"
mode: "two-way-resolved"