-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_program_model.py
263 lines (227 loc) · 13.8 KB
/
train_program_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
import torch.optim as optim
import torch.nn as nn
import torch
import matplotlib.pyplot as plt
from neural_nets_library import training
from tree_to_sequence.tree_encoder import TreeEncoder
from tree_to_sequence.tree_decoder import TreeDecoder
from tree_to_sequence.tree_to_sequence_attention import TreeToSequenceAttention
from tree_to_sequence.grammar_tree_decoder import GrammarTreeDecoder
from tree_to_sequence.multilayer_lstm_cell import MultilayerLSTMCell
from tree_to_sequence.program_datasets import *
from tree_to_sequence.translating_trees import *
from tree_to_sequence.tree_to_tree_attention import TreeToTreeAttention
from functools import partial
import argparse
import os
# Counts the number of matches between the prediction and target.
def count_matches(prediction, target):
matches = 0
if int(prediction.value) == int(target.value):
matches += 1
for i in range(min(len(target.children), len(prediction.children))):
matches += count_matches(prediction.children[i], target.children[i])
return matches
# Program accuracy (1 if completely correct, 0 otherwise)
def program_accuracy(prediction, target):
if decoder_type == "sequence":
return 1 if target.tolist() == prediction else 0
if prediction.size() == count_matches(prediction, target) and prediction.size() == target.size():
return 1
else:
return 0
# Calculate validation accuracy (this could either be program or token accuracy)
def validation_criterion(prediction, target):
return program_accuracy(prediction, target)
def reset_all_parameters_uniform(model, stdev):
for param in model.parameters():
nn.init.uniform_(param, -stdev, stdev)
parser = argparse.ArgumentParser()
parser.add_argument('--decoder_type', required=True, help='Name of decoder. Should be either grammar, sequence, or tree.')
parser.add_argument('--save_file', required=True, help='Name of save file')
parser.add_argument('--problem_number', type=int, required=True, help='Number of the program translation problem. 0 corresponds to for-lambda while 1 is javascript-coffeescript')
parser.add_argument('--save_folder', default="test_various_models", help='Name of folder to save files in. Defaults to test_various_models/')
parser.add_argument('--cuda_device', type=int, default=0, help='Number of cuda device. Not relevant if cuda is disabled. Default is 0.')
parser.add_argument('--num_vars', type=int, default=10, help='Number of variable names. Default is 10.')
parser.add_argument('--num_ints', type=int, default=11, help='Number of possible integer literals. Default is 11')
parser.add_argument('--one_hot', action='store_true', help='Use one hot vectors instead of embeddings.')
parser.add_argument('--binarize_input', action='store_true', help="Binarize the input. Default is not to.")
parser.add_argument('--binarize_output', action='store_true', help="Binarize the output. Default is not to.")
parser.add_argument('--binary_tree_lstm_cell', action='store_true', help="Use a binary tree lstm cell. Default is not to.")
parser.add_argument('--no_long_base_case', action='store_true', help="Use a more minimal tree (mainly dropping out tokens that don't add any information)")
parser.add_argument('--lr', type=float, default=0.005, help='learning rate for model using adam, default=0.005')
parser.add_argument('--dropout', type=float, default=False, help='Dropout probability. The default is not to use dropout.')
parser.add_argument('--num_epochs', type=int, default=5, help='Number of epochs to train for. The default is 5.')
parser.add_argument('--no_cuda', action='store_true', help='Disables cuda')
parser.add_argument('--model', default=False, help='File name for model to continue training.')
parser.add_argument('--annotation_method', default=None, help='Annotation order (for the attention matrix). Options are "pre_order" and "reverse_level".')
parser.add_argument('--seed', type=int, default=None, help='Random seed. Used to ensure reproducibility.')
parser.add_argument('--num_samples', type=int, default=None, help='Num of samples in dataset. Currently only valid for For/Lambda. Used for testing so things go faster.')
opt = parser.parse_args()
decoder_type = opt.decoder_type
save_file = opt.save_file
save_folder = opt.save_folder
use_cuda = not opt.no_cuda
torch.cuda.set_device(opt.cuda_device)
if not opt.seed is None:
torch.manual_seed(opt.seed)
num_vars = opt.num_vars
num_ints = opt.num_ints
one_hot = opt.one_hot
binarize_input = opt.binarize_input
binarize_output = opt.binarize_output
eos_token = (decoder_type != "grammar")
long_base_case = not opt.no_long_base_case
input_as_seq = False
output_as_seq = (decoder_type == "sequence")
annotation_method = None
if opt.annotation_method == "pre_order":
annotation_method = pre_order
if opt.annotation_method == "reverse_level":
annotation_method = reverse_level
if opt.problem_number == 0:
# Make dataset
dset_train = ForLambdaDataset("ANC/MainProgramDatasets/ForLambda/training_For.json",
binarize_input=binarize_input, binarize_output=binarize_output,
eos_token=eos_token, one_hot=one_hot,
num_ints=num_ints, num_vars=num_vars,
long_base_case=long_base_case,
input_as_seq=input_as_seq,
output_as_seq=output_as_seq, num_samples=opt.num_samples)
dset_val = ForLambdaDataset("ANC/MainProgramDatasets/ForLambda/validation_For.json",
binarize_input=binarize_input, binarize_output=binarize_output,
eos_token=eos_token, one_hot=one_hot,
num_ints=num_ints, num_vars=num_vars,
long_base_case=long_base_case,
input_as_seq=input_as_seq,
output_as_seq=output_as_seq, num_samples=opt.num_samples)
dset_test = ForLambdaDataset("ANC/MainProgramDatasets/ForLambda/test_For.json",
binarize_input=binarize_input, binarize_output=binarize_output,
eos_token=eos_token, one_hot=one_hot,
num_ints=num_ints, num_vars=num_vars,
long_base_case=long_base_case,
input_as_seq=input_as_seq,
output_as_seq=output_as_seq, num_samples=opt.num_samples)
elif opt.problem_number == 1:
dset_train = JsCoffeeDataset("ANC/MainProgramDatasets/CoffeeJavascript/training_CS.json",
"ANC/MainProgramDatasets/CoffeeJavascript/training_JS.json",
binarize_input=binarize_input, binarize_output=binarize_output,
eos_token=eos_token, one_hot=one_hot, num_ints=num_ints, num_vars=num_vars,
long_base_case=long_base_case, input_as_seq=input_as_seq, output_as_seq=output_as_seq)
dset_val = JsCoffeeDataset("ANC/MainProgramDatasets/CoffeeJavascript/validation_CS.json", "ANC/MainProgramDatasets/CoffeeJavascript/validation_JS.json",
binarize_input=binarize_input, binarize_output=binarize_output,
eos_token=eos_token, one_hot=one_hot, num_ints=num_ints, num_vars=num_vars,
long_base_case=long_base_case, input_as_seq=input_as_seq, output_as_seq=output_as_seq)
dset_test = JsCoffeeDataset("ANC/MainProgramDatasets/CoffeeJavascript/test_CS.json", "ANC/MainProgramDatasets/CoffeeJavascript/test_JS.json",
binarize_input=binarize_input, binarize_output=binarize_output,
eos_token=eos_token, one_hot=one_hot, num_ints=num_ints, num_vars=num_vars,
long_base_case=long_base_case, input_as_seq=input_as_seq, output_as_seq=output_as_seq)
else:
raise ValueError("Problem number must be either 0 or 1.")
if decoder_type != "sequence":
max_size = int(max([x[1].size() for x in dset_train] + [x[1].size() for x in dset_val] + [x[1].size() for x in dset_test]))
embedding_size = 256
hidden_size = 256
num_layers = 1
alignment_size = 50
align_type = 1
if opt.problem_number == 0:
encoder_input_size = num_vars + num_ints + len(for_ops)
nclass = num_vars + num_ints + len(lambda_ops)
num_categories = len(LambdaGrammar)
num_possible_parents = len(Lambda)
max_num_children = 2 if binarize_output else 4
parent_to_category = partial(parent_to_category_LAMBDA, num_vars, num_ints)
category_to_child = partial(category_to_child_LAMBDA, num_vars, num_ints)
else:
encoder_input_size = num_vars + num_ints + len(javascript_ops)
nclass = num_vars + num_ints + len(coffee_ops)
num_categories = len(CoffeeGrammar)
num_possible_parents = len(Coffee)
max_num_children = 2 if binarize_output else 3
parent_to_category = partial(parent_to_category_coffee, num_vars, num_ints)
category_to_child = partial(category_to_child_coffee, num_vars, num_ints)
plot_every = 100
save_every=5000
def save_plots():
# Save plots
plt.plot([x * plot_every for x in range(len(train_plot_losses))], train_plot_losses)
plt.plot([x * plot_every for x in range(len(val_plot_losses))], val_plot_losses)
plt.title("Training Loss")
plt.xlabel('Training Examples')
plt.ylabel('Cross-Entropy Loss')
plt.legend(("Train", "Validation"))
plt.savefig(save_folder + "/" + save_file + "_train_plot.png")
plt.close()
plt.plot([x * plot_every for x in range(len(train_plot_accuracies))], train_plot_accuracies)
plt.plot([x * plot_every for x in range(len(val_plot_accuracies))], val_plot_accuracies)
plt.title("Training Program Accuracy")
plt.xlabel('Training Examples')
plt.ylabel('Percent Accurate Programs')
plt.legend(("Train", "Validation"))
plt.savefig(save_folder + "/" + save_file + "_accuracy_plot.png")
def save_test_accuracy():
with open(save_folder + "/" + save_file + "_test.txt", "a") as file:
file.write(str(test_accuracy))
print('really done')
def make_model():
encoder = TreeEncoder(encoder_input_size, hidden_size, num_layers, [1, 2, 3, 4, 5], attention=True, one_hot=one_hot,
binary_tree_lstm_cell=opt.binary_tree_lstm_cell, annotation_method=annotation_method)
if opt.model:
return torch.load("test_various_models/" + opt.model)
if decoder_type == "grammar":
decoder = GrammarTreeDecoder(embedding_size, hidden_size, num_categories,
num_possible_parents, parent_to_category,
category_to_child, share_linear=True, share_lstm_cell=True,
num_ints_vars=num_ints + num_vars)
program_model = TreeToTreeAttention(encoder, decoder,
hidden_size, embedding_size,
nclass=nclass, root_value=nclass,
alignment_size=alignment_size,
align_type=align_type, max_size=max_size)
elif decoder_type == "tree":
decoder = TreeDecoder(embedding_size, hidden_size, max_num_children, nclass=nclass)
program_model = TreeToTreeAttention(encoder, decoder,
hidden_size, embedding_size,
nclass=nclass, root_value=nclass,
alignment_size=alignment_size,
align_type=align_type, max_size=max_size)
elif decoder_type == "sequence":
decoder = MultilayerLSTMCell(embedding_size + hidden_size, hidden_size, num_layers)
program_model = TreeToSequenceAttention(encoder, decoder, hidden_size, nclass,
embedding_size, alignment_size=alignment_size,
align_type=align_type)
if use_cuda:
program_model = program_model.cuda()
reset_all_parameters_uniform(program_model, 0.1)
encoder.initialize_forget_bias(3)
decoder.initialize_forget_bias(3)
return program_model
test_accuracies = []
program_model = make_model()
# Optimizer
optimizer = optim.Adam(program_model.parameters(), lr=opt.lr)
lr_scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, verbose=True, patience=500, factor=0.8)
# Train
os.system("mkdir "+ save_folder)
model, train_plot_losses, train_plot_accuracies, val_plot_losses, val_plot_accuracies = training.train_model_tree_to_tree(
program_model,
dset_train,
optimizer,
lr_scheduler=lr_scheduler,
num_epochs=opt.num_epochs, plot_every=plot_every,
batch_size=100,
print_every=200,
validation_dset = dset_val,
validation_criterion=validation_criterion,
use_cuda=use_cuda,
plateau_lr=True,
save_file=save_file,
save_folder=save_folder,
save_every=save_every)
# Test
test_accuracy = training.test_model_tree_to_tree(model, dset_test, validation_criterion, use_cuda=True)
test_accuracies.append(test_accuracy)
# save_plots()
print("test", test_accuracy)
save_test_accuracy()