-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathget_accuracy.py
82 lines (66 loc) · 3.32 KB
/
get_accuracy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import matplotlib
matplotlib.use('Agg')
import torch.optim as optim
import torch.nn as nn
import torch
import matplotlib.pyplot as plt
from neural_nets_library import training
from tree_to_sequence.program_datasets import *
from tree_to_sequence.translating_trees import *
from functools import partial
import argparse
import os
# Counts the number of matches between the prediction and target.
def count_matches(prediction, target):
matches = 0
if int(prediction.value) == int(target.value):
matches += 1
for i in range(min(len(target.children), len(prediction.children))):
matches += count_matches(prediction.children[i], target.children[i])
return matches
# Program accuracy (1 if completely correct, 0 otherwise)
def program_accuracy(prediction, target):
if decoder_type == "sequence":
return 1 if target.tolist() == prediction else 0
if prediction.size() == count_matches(prediction, target) and prediction.size() == target.size():
return 1
else:
return 0
# Calculate validation accuracy (this could either be program or token accuracy)
def validation_criterion(prediction, target):
return program_accuracy(prediction, target)
parser = argparse.ArgumentParser()
parser.add_argument('--model', required=True, help='Name of model file.')
# parser.add_argument('--problem_number', type=int, required=True, help='Number of the program translation problem. 0 corresponds to for-lambda while 1 is javascript-coffeescript')
parser.add_argument('--decoder_type', required=True, help='Name of decoder. Should be either grammar, sequence, or tree.')
parser.add_argument('--device_number', type=int, default=0, help='Number of device to test on. Default is 0')
opt = parser.parse_args()
torch.cuda.set_device(opt.device_number)
decoder_type = opt.decoder_type
num_vars = 10
num_ints = 11
one_hot = False
binarize_input = True
binarize_output = (decoder_type == "tree")
eos_token = (decoder_type != "grammar")
long_base_case = True
input_as_seq = False
output_as_seq = (decoder_type == "sequence")
# Test
model = torch.load("test_various_models/" + opt.model)
model = model.cuda(opt.device_number)
# if opt.problem_number == 0:
dset_test = ForLambdaDataset("ANC/MainProgramDatasets/ForLambda/test_For.json",
binarize_input=binarize_input, binarize_output=binarize_output,
eos_token=eos_token, one_hot=one_hot,
num_ints=num_ints, num_vars=num_vars,
long_base_case=long_base_case,
input_as_seq=input_as_seq,
output_as_seq=output_as_seq)
# elif opt.problem_number == 1:
# dset_test = JsCoffeeDataset("ANC/MainProgramDatasets/CoffeeJavascript/test_CS.json", "ANC/MainProgramDatasets/CoffeeJavascript/test_JS.json",
# binarize_input=binarize_input, binarize_output=binarize_output,
# eos_token=eos_token, one_hot=one_hot, num_ints=num_ints, num_vars=num_vars,
# long_base_case=long_base_case, input_as_seq=input_as_seq, output_as_seq=output_as_seq)
mean_acc = training.test_model_tree_to_tree(model, dset_test, validation_criterion, use_cuda=True)
print("mean accuracy", mean_acc)