forked from simzhangbest/SAM2PATH
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlosses.py
73 lines (54 loc) · 2.63 KB
/
losses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import torch
import torch.nn as nn
import torch.nn.functional as F
from monai.losses import DiceLoss, FocalLoss
# To deal with unlabeled region for losses: make prediciton & target all zero
# To deal with unlabeled region for metrics: torchmetrics support ignore_index
class SAMLoss(nn.Module):
def __init__(self, focal_cof: float = 20., dice_cof: float = 1., ce_cof: float = 0., iou_cof: float = 1.):
super().__init__()
self.focal_cof = focal_cof
self.dice_cof = dice_cof
self.ce_cof = ce_cof
self.iou_cof = iou_cof
self.dice_loss_fn = DiceLoss(include_background=False, to_onehot_y=False, sigmoid=False, softmax=False)
self.focal_loss_fn = FocalLoss(include_background=False, to_onehot_y=False)
self.ce_loss_fn = nn.CrossEntropyLoss(ignore_index=0)
@torch.no_grad()
def to_one_hot_label(self, targets, num_classes):
targets_one_hot = torch.nn.functional.one_hot(targets, num_classes=num_classes)
targets_one_hot = torch.movedim(targets_one_hot, -1, 1)
return targets_one_hot
def forward(self, inputs, targets, iou_pred, ignored_masks=None):
# masks for ignored regions
if ignored_masks is not None:
inputs = inputs * (1. - ignored_masks.expand_as(inputs))
targets = targets * (1 - ignored_masks.long().squeeze(1))
targets_one_hot = self.to_one_hot_label(targets, num_classes=inputs.shape[1])
inputs_softmax = F.softmax(inputs, dim=1)
dice = self.dice_loss_fn(inputs_softmax, targets_one_hot)
focal = self.focal_loss_fn(inputs, targets_one_hot)
iou_true = calc_iou(inputs_softmax, targets_one_hot)
iou = F.mse_loss(iou_pred[:, 1:], iou_true[:, 1:]) # ignore background
# iou = 0.
ce_loss = self.ce_loss_fn(inputs, targets)
total_loss = self.focal_cof * focal + self.dice_cof * dice + self.ce_cof * ce_loss + self.iou_cof * iou
all_loss = {
"loss": total_loss,
"focal": focal,
"dice": dice,
"ce": ce_loss,
"iou": iou
}
# print(f"sim try get total loss: {all_loss}")
return all_loss
def calc_iou(pred_mask: torch.Tensor, gt_mask: torch.Tensor):
# both are B, N_cls, H, W
# pred_mask = F.softmax(pred_mask, dim=1)
pred_mask = (pred_mask >= 0.5).float()
intersection = torch.sum(torch.mul(pred_mask, gt_mask), dim=(2, 3))
union = torch.sum(pred_mask, dim=(2, 3)) + torch.sum(gt_mask, dim=(2, 3)) - intersection
epsilon = 1e-7
batch_iou = intersection / (union + epsilon)
batch_iou = batch_iou.unsqueeze(2)
return batch_iou