-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathpredict_api.py
141 lines (110 loc) · 6.54 KB
/
predict_api.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Sep 19 13:58:02 2023
@author: henry
"""
from flask import Flask, render_template, Response, request
import json
import argparse
import os
import sys
from pathlib import Path
from ultralytics import YOLO
from ultralytics.utils.checks import cv2, print_args
from utils.general import update_options
# Initialize paths
FILE = Path(__file__).resolve()
ROOT = FILE.parents[0]
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT))
ROOT = Path(os.path.relpath(ROOT, Path.cwd()))
# Initialize Flask API
app = Flask(__name__)
def predict(opt):
"""
Perform object detection using the YOLO model and yield results.
Parameters:
- opt (Namespace): A namespace object that contains all the options for YOLO object detection,
including source, model path, confidence thresholds, etc.
Yields:
- JSON: If opt.save_txt is True, yields a JSON string containing the detection results.
- bytes: If opt.save_txt is False, yields JPEG-encoded image bytes with object detection results plotted.
"""
results = model(**vars(opt), stream=True)
for result in results:
if opt.save_txt:
result_json = json.loads(result.tojson())
yield json.dumps({'results': result_json})
else:
im0 = cv2.imencode('.jpg', result.plot())[1].tobytes()
yield (b'--frame\r\n'
b'Content-Type: image/jpeg\r\n\r\n' + im0 + b'\r\n')
@app.route('/')
def index():
"""
Video streaming home page.
"""
return render_template('index.html')
@app.route('/predict', methods=['GET', 'POST'])
def video_feed():
if request.method == 'POST':
uploaded_file = request.files.get('myfile')
save_txt = request.form.get('save_txt', 'F') # Default to 'F' if save_txt is not provided
if uploaded_file:
source = Path(__file__).parent / raw_data / uploaded_file.filename
uploaded_file.save(source)
opt.source = source
else:
opt.source, _ = update_options(request)
opt.save_txt = True if save_txt == 'T' else False
elif request.method == 'GET':
opt.source, opt.save_txt = update_options(request)
return Response(predict(opt), mimetype='multipart/x-mixed-replace; boundary=frame')
if __name__ == '__main__':
# Input arguments
parser = argparse.ArgumentParser()
parser.add_argument('--model','--weights', type=str, default=ROOT / 'yolov8s.pt', help='model path or triton URL')
parser.add_argument('--source', type=str, default=ROOT / 'data/images', help='source directory for images or videos')
parser.add_argument('--conf','--conf-thres', type=float, default=0.25, help='object confidence threshold for detection')
parser.add_argument('--iou', '--iou-thres', type=float, default=0.7, help='intersection over union (IoU) threshold for NMS')
parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='image size as scalar or (h, w) list, i.e. (640, 480)')
parser.add_argument('--half', action='store_true', help='use half precision (FP16)')
parser.add_argument('--device', default='', help='device to run on, i.e. cuda device=0/1/2/3 or device=cpu')
parser.add_argument('--show','--view-img', default=False, action='store_true', help='show results if possible')
parser.add_argument('--save', action='store_true', help='save images with results')
parser.add_argument('--save_txt','--save-txt', action='store_true', help='save results as .txt file')
parser.add_argument('--save_conf', '--save-conf', action='store_true', help='save results with confidence scores')
parser.add_argument('--save_crop', '--save-crop', action='store_true', help='save cropped images with results')
parser.add_argument('--show_labels','--show-labels', default=True, action='store_true', help='show labels')
parser.add_argument('--show_conf', '--show-conf', default=True, action='store_true', help='show confidence scores')
parser.add_argument('--max_det','--max-det', type=int, default=300, help='maximum number of detections per image')
parser.add_argument('--vid_stride', '--vid-stride', type=int, default=1, help='video frame-rate stride')
parser.add_argument('--stream_buffer', '--stream-buffer', default=False, action='store_true', help='buffer all streaming frames (True) or return the most recent frame (False)')
parser.add_argument('--line_width', '--line-thickness', default=None, type=int, help='The line width of the bounding boxes. If None, it is scaled to the image size.')
parser.add_argument('--visualize', default=False, action='store_true', help='visualize model features')
parser.add_argument('--augment', default=False, action='store_true', help='apply image augmentation to prediction sources')
parser.add_argument('--agnostic_nms', '--agnostic-nms', default=False, action='store_true', help='class-agnostic NMS')
parser.add_argument('--retina_masks', '--retina-masks', default=False, action='store_true', help='whether to plot masks in native resolution')
parser.add_argument('--classes', type=list, help='filter results by class, i.e. classes=0, or classes=[0,2,3]') # 'filter by class: --classes 0, or --classes 0 2 3')
parser.add_argument('--boxes', default=True, action='store_false', help='Show boxes in segmentation predictions')
parser.add_argument('--exist_ok', '--exist-ok', action='store_true', help='existing project/name ok, do not increment')
parser.add_argument('--project', default=ROOT / 'runs/detect', help='save results to project/name')
parser.add_argument('--name', default='exp', help='save results to project/name')
parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
parser.add_argument('--raw_data', '--raw-data', default=ROOT / 'data/raw', help='save raw images to data/raw')
parser.add_argument('--port', default=5000, type=int, help='port deployment')
opt, unknown = parser.parse_known_args()
# print used arguments
print_args(vars(opt))
# Get por to deploy
port = opt.port
delattr(opt, 'port')
# Create path for raw data
raw_data = Path(opt.raw_data)
raw_data.mkdir(parents=True, exist_ok=True)
delattr(opt, 'raw_data')
# Load model (Ensemble is not supported)
model = YOLO(str(opt.model))
# Run app
app.run(host='0.0.0.0', port=port, debug=False) # Don't use debug=True, model will be loaded twice (https://stackoverflow.com/questions/26958952/python-program-seems-to-be-running-twice)