-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate_model.py
130 lines (109 loc) · 3.68 KB
/
evaluate_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
#%%
from __future__ import absolute_import, division, print_function, unicode_literals
import tensorflow as tf
from tensorflow import keras
from sklearn import metrics
import numpy as np
import matplotlib.pyplot as plt
import pickle
#%%
# load model
model = keras.models.load_model("model/cozmo_drive_model.h5")
#%%
# load data
with open("model/pickles/train_val_test.pkl", 'rb') as file:
train_images, val_images, test_images, train_labels, val_labels, test_labels = pickle.load(file)
#%%
# load label names
with open("model/pickles/label_names.pkl", 'rb') as file:
labels_dict, labels_list = pickle.load(file)
#%%
# make predictions
predictions = model.predict(test_images)
#%%
# get top prediction for calculating precision/recall
top_predictions = np.argmax(predictions, axis=1)
#%%
# save predictions
with open("model/pickles/predictions.pkl", 'wb') as file:
pickle.dump([predictions, top_predictions], file)
#%%
# classification report
# we only want target names for the labels present in the test set
# e.g. backwards left and right aren't in test set (or training/val)
print(metrics.classification_report(test_labels, top_predictions,
target_names = [labels_list[i] for i in np.unique(test_labels)]))
#%%
# view a prediction
np.argmax(predictions[0]) # argmax to select label w/ highest prob
#%%
# view true label for this prediction
test_labels[0]
#%%
# plotting functions
def plot_image(i, predictions_array, true_label, img, save=False):
predictions_array, true_label, img = predictions_array[i], true_label[i], img[i]
plt.grid(False)
plt.xticks([])
plt.yticks([])
# plt.imshow(img, cmap=plt.cm.binary)
plt.imshow(img, cmap=plt.cm.gray)
predicted_label = np.argmax(predictions_array)
if predicted_label == true_label:
color = 'blue'
else:
color = 'red'
plt.xlabel("{} {:2.0f}% ({})".format(labels_list[predicted_label],
100*np.max(predictions_array),
labels_list[true_label]),
color=color)
if save:
plt.savefig(i)
def plot_value_array(i, predictions_array, true_label):
# selects the array of predicted probabilities & labels for the desired
# image (i)
predictions_array, true_label = predictions_array[i], true_label[i]
plt.grid(False)
plt.xticks([])
plt.yticks([])
# plot probability for each of the classes in grey
thisplot = plt.bar(range(len(labels_list)), predictions_array, color="#777777")
# sets y-limits to (0, 1) (not sure why this is necessary)
plt.ylim([0, 1])
# select the label predicted by model
predicted_label = np.argmax(predictions_array)
# color bar for predicted label red
thisplot[predicted_label].set_color('red')
# color bar for true label blue
# this overwrites the color of the predicted label if they're the same label
thisplot[true_label].set_color('blue')
#%%
# investigate 0th image
i = 1
plt.figure(figsize=(6,3))
plt.subplot(1,2,1)
plot_image(i, predictions, test_labels, test_images)
plt.subplot(1,2,2)
plot_value_array(i, predictions, test_labels)
plt.show()
#%%
# investigate 12th image
i = 12
plt.figure(figsize=(6,3))
plt.subplot(1,2,1)
plot_image(i, predictions, test_labels, test_images)
plt.subplot(1,2,2)
plot_value_array(i, predictions, test_labels)
plt.show()
#%%
# investigate first 15 images
num_rows = 5
num_cols = 3
num_images = num_rows*num_cols
plt.figure(figsize=(2*2*num_cols, 2*num_rows))
for i in range(num_images):
plt.subplot(num_rows, 2*num_cols, 2*i+1)
plot_image(i, predictions, test_labels, test_images)
plt.subplot(num_rows, 2*num_cols, 2*i+2)
plot_value_array(i, predictions, test_labels)
plt.show()