forked from naver/sqlova
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_shallow_layer.py
707 lines (580 loc) · 28 KB
/
train_shallow_layer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
# Wonseok Hwang
# Sep30, 2018
import os, sys, argparse, re, json
import random as python_random
from matplotlib.pylab import *
import torch.nn as nn
import torch
import torch.nn.functional as F
# import torchvision.datasets as dsets
# BERT
import bert.tokenization as tokenization
from bert.modeling import BertConfig, BertModel
from sqlova.utils.utils_wikisql import *
from sqlova.model.nl2sql.wikisql_models import *
from sqlnet.dbengine import DBEngine
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def construct_hyper_param(parser):
parser.add_argument('--tepoch', default=200, type=int)
parser.add_argument("--bS", default=16, type=int,
help="Batch size")
parser.add_argument("--accumulate_gradients", default=2, type=int,
help="The number of accumulation of backpropagation to effectivly increase the batch size.")
parser.add_argument('--fine_tune',
default=True,
action='store_true',
help="If present, BERT is trained.")
parser.add_argument("--model_type", default='FT_Scalar_1', type=str,
help="Type of model.")
parser.add_argument('--aug',
default=False,
action='store_true',
help="If present, aug.train.jsonl is used.")
# 1.2 BERT Parameters
parser.add_argument("--vocab_file",
default='vocab.txt', type=str,
help="The vocabulary file that the BERT model was trained on.")
parser.add_argument("--max_seq_length",
default=222, type=int, # Set based on maximum length of input tokens.
help="The maximum total input sequence length after WordPiece tokenization. Sequences "
"longer than this will be truncated, and sequences shorter than this will be padded.")
parser.add_argument("--num_target_layers",
default=1, type=int,
help="The Number of final layers of BERT to be used in downstream task.")
parser.add_argument('--lr_bert', default=6e-6, type=float, help='BERT model learning rate.')
parser.add_argument('--seed',
type=int,
default=42,
help="random seed for initialization")
parser.add_argument('--no_pretraining', action='store_true', help='Use BERT pretrained model')
parser.add_argument("--bert_type_abb", default='uS', type=str,
help="Type of BERT model to load. e.g.) uS, uL, cS, cL, and mcS")
parser.add_argument("--col_pool_type", default='start_tok', type=str,
help="Which col-token shall be used? start_tok, end_tok, or avg are possible choices.")
# 1.3 Seq-to-SQL module parameters
parser.add_argument('--lS', default=2, type=int, help="The number of LSTM layers.")
parser.add_argument('--dr', default=0.3, type=float, help="Dropout rate.")
parser.add_argument('--lr', default=1e-5, type=float, help="Learning rate.")
parser.add_argument("--hS", default=100, type=int, help="The dimension of hidden vector in the seq-to-SQL module.")
# 1.4 Execution-guided decoding beam-size. It is used only in test.py
parser.add_argument('--EG',
default=False,
action='store_true',
help="If present, Execution guided decoding is used in test.")
parser.add_argument('--beam_size',
type=int,
default=4,
help="The size of beam for smart decoding")
# 1.5 Arguments only for test.py
parser.add_argument('--sn', default=42, type=int, help="The targetting session number.")
parser.add_argument("--target_epoch", default='best', type=str,
help="Targer epoch (the save name from nsml).")
parser.add_argument("--tag", default='', type=str,
help="Tag of saved files. e.g.) '', 'FT1', 'FT1_aug', 'no_pretraining', 'no_tuning',..")
args = parser.parse_args()
map_bert_type_abb = {'uS': 'uncased_L-12_H-768_A-12',
'uL': 'uncased_L-24_H-1024_A-16',
'cS': 'cased_L-12_H-768_A-12',
'cL': 'cased_L-24_H-1024_A-16',
'mcS': 'multi_cased_L-12_H-768_A-12'}
args.bert_type = map_bert_type_abb[args.bert_type_abb]
print(f"BERT-type: {args.bert_type}")
#
# Decide whether to use lower_case.
if args.bert_type_abb == 'cS' or args.bert_type_abb == 'cL' or args.bert_type_abb == 'mcS':
args.do_lower_case = False
else:
args.do_lower_case = True
# args.toy_model = not torch.cuda.is_available()
args.toy_model = not True
args.toy_size = 32
if args.model_type == 'FT_Scalar_1':
assert args.num_target_layers == 1
assert args.fine_tune == True
# Seeds for random number generation.
seed(args.seed)
python_random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(args.seed)
return args
def get_bert(BERT_PT_PATH, bert_type, do_lower_case, no_pretraining):
bert_config_file = os.path.join(BERT_PT_PATH, f'bert_config_{bert_type}.json')
vocab_file = os.path.join(BERT_PT_PATH, f'vocab_{bert_type}.txt')
init_checkpoint = os.path.join(BERT_PT_PATH, f'pytorch_model_{bert_type}.bin')
bert_config = BertConfig.from_json_file(bert_config_file)
tokenizer = tokenization.FullTokenizer(
vocab_file=vocab_file, do_lower_case=do_lower_case)
bert_config.print_status()
model_bert = BertModel(bert_config)
if no_pretraining:
pass
else:
model_bert.load_state_dict(torch.load(init_checkpoint, map_location='cpu'))
print("Load pre-trained parameters.")
model_bert.to(device)
return model_bert, tokenizer, bert_config
def get_opt(model, model_bert, model_type):
if model_type == 'FT_Scalar_1':
# Model itself does not have trainable parameters. Thus,
opt_bert = torch.optim.Adam(list(filter(lambda p: p.requires_grad, model.parameters())) \
# + list(model_bert.parameters()),
+ list(filter(lambda p: p.requires_grad, model_bert.parameters())),
lr=args.lr_bert, weight_decay=0)
opt = opt_bert # for consistency in interface
else:
raise NotImplementedError
# opt = torch.optim.Adam(filter(lambda p: p.requires_grad, model.parameters()),
# lr=args.lr, weight_decay=0)
#
# opt_bert = torch.optim.Adam(filter(lambda p: p.requires_grad, model_bert.parameters()),
# lr=args.lr_bert, weight_decay=0)
return opt, opt_bert
def get_models(args, BERT_PT_PATH, trained=False, path_model_bert=None, path_model=None):
# some constants
agg_ops = ['', 'MAX', 'MIN', 'COUNT', 'SUM', 'AVG']
cond_ops = ['=', '>', '<', 'OP'] # do not know why 'OP' required. Hence,
print(f"Batch_size = {args.bS * args.accumulate_gradients}")
print(f"BERT parameters:")
print(f"learning rate: {args.lr_bert}")
print(f"Fine-tune BERT: {args.fine_tune}")
# Get BERT
model_bert, tokenizer, bert_config = get_bert(BERT_PT_PATH, args.bert_type, args.do_lower_case,
args.no_pretraining)
args.iS = bert_config.hidden_size * args.num_target_layers # Seq-to-SQL input vector dimenstion
# Get Seq-to-SQL
n_cond_ops = len(cond_ops)
n_agg_ops = len(agg_ops)
print(f"Seq-to-SQL: the number of final BERT layers to be used: {args.num_target_layers}")
print(f"Seq-to-SQL: the size of hidden dimension = {args.hS}")
print(f"Seq-to-SQL: LSTM encoding layer size = {args.lS}")
print(f"Seq-to-SQL: dropout rate = {args.dr}")
print(f"Seq-to-SQL: learning rate = {args.lr}")
model = FT_Scalar_1(args.iS, args.hS, args.lS, args.dr, n_cond_ops, n_agg_ops)
model = model.to(device)
if trained:
assert path_model_bert != None
assert path_model != None
if torch.cuda.is_available():
res = torch.load(path_model_bert)
else:
res = torch.load(path_model_bert, map_location='cpu')
model_bert.load_state_dict(res['model_bert'])
model_bert.to(device)
if torch.cuda.is_available():
res = torch.load(path_model)
else:
res = torch.load(path_model, map_location='cpu')
model.load_state_dict(res['model'])
return model, model_bert, tokenizer, bert_config
def get_data(path_wikisql, args):
train_data, train_table, dev_data, dev_table, _, _ = load_wikisql(path_wikisql, args.toy_model, args.toy_size,
no_w2i=True, no_hs_tok=True,
aug=args.aug)
train_loader, dev_loader = get_loader_wikisql(train_data, dev_data, args.bS, shuffle_train=True)
return train_data, train_table, dev_data, dev_table, train_loader, dev_loader
def train(train_loader, train_table, model, model_bert, opt, bert_config, tokenizer,
max_seq_length, num_target_layers, accumulate_gradients=1, check_grad=False,
st_pos=0, opt_bert=None, path_db=None, dset_name='train', col_pool_type='start_tok', aug=False):
model.train()
model_bert.train()
ave_loss = 0
cnt = 0 # count the # of examples
cnt_sc = 0 # count the # of correct predictions of select column
cnt_sa = 0 # of selectd aggregation
cnt_wn = 0 # of where number
cnt_wc = 0 # of where column
cnt_wo = 0 # of where operator
cnt_wv = 0 # of where-value
cnt_wvi = 0 # of where-value index (on question tokens)
cnt_lx = 0 # of logical form acc
cnt_x = 0 # of execution acc
# Engine for SQL querying.
engine = DBEngine(os.path.join(path_db, f"{dset_name}.db"))
for iB, t in enumerate(train_loader):
cnt += len(t)
if cnt < st_pos:
continue
# Get fields
nlu, nlu_t, sql_i, sql_q, sql_t, tb, hs_t, hds = get_fields(t, train_table, no_hs_t=True, no_sql_t=True)
g_sc, g_sa, g_wn, g_wc, g_wo, g_wv = get_g(sql_i)
# get ground truth where-value index under CoreNLP tokenization scheme. It's done already on trainset.
g_wvi_corenlp = get_g_wvi_corenlp(t)
all_encoder_layer, pooled_output, tokens, i_nlu, i_hds, \
l_n, l_hpu, l_hs, \
nlu_tt, t_to_tt_idx, tt_to_t_idx \
= get_bert_output(model_bert, tokenizer, nlu_t, hds, max_seq_length)
try:
#
g_wvi = get_g_wvi_bert_from_g_wvi_corenlp(t_to_tt_idx, g_wvi_corenlp)
except:
# Exception happens when where-condition is not found in nlu_tt.
# In this case, that train example is not used.
# During test, that example considered as wrongly answered.
# e.g. train: 32.
continue
wemb_n = get_wemb_n(i_nlu, l_n, bert_config.hidden_size,
bert_config.num_hidden_layers, all_encoder_layer, 1)
wemb_h = get_wemb_h_FT_Scalar_1(i_hds, l_hs, bert_config.hidden_size, all_encoder_layer,
col_pool_type=col_pool_type)
# wemb_h = [B, max_header_number, hS]
cls_vec = pooled_output
# model specific part
# get g_wvi (it is idex for word-piece tok)
# score
s_sc, s_sa, s_wn, s_wc, s_wo, s_wv = model(wemb_n, l_n, wemb_h, l_hs, cls_vec,
g_sc=g_sc, g_sa=g_sa, g_wn=g_wn, g_wc=g_wc, g_wo=g_wo, g_wvi=g_wvi)
# Calculate loss & step
loss = Loss_sw_se(s_sc, s_sa, s_wn, s_wc, s_wo, s_wv, g_sc, g_sa, g_wn, g_wc, g_wo, g_wvi)
# Calculate gradient
if iB % accumulate_gradients == 0: # mode
# at start, perform zero_grad
opt.zero_grad()
if opt_bert:
opt_bert.zero_grad()
loss.backward()
if accumulate_gradients == 1:
opt.step()
if opt_bert:
opt_bert.step()
elif iB % accumulate_gradients == (accumulate_gradients-1):
# at the final, take step with accumulated graident
loss.backward()
opt.step()
if opt_bert:
opt_bert.step()
else:
# at intermediate stage, just accumulates the gradients
loss.backward()
if check_grad:
named_parameters = model.named_parameters()
mu_list, sig_list = get_mean_grad(named_parameters)
grad_abs_mean_mean = mean(mu_list)
grad_abs_mean_sig = std(mu_list)
grad_abs_sig_mean = mean(sig_list)
else:
grad_abs_mean_mean = 1
grad_abs_mean_sig = 1
grad_abs_sig_mean = 1
# Prediction
pr_sc, pr_sa, pr_wn, pr_wc, pr_wo, pr_wvi = pred_sw_se(s_sc, s_sa, s_wn, s_wc, s_wo, s_wv, )
pr_wv_str, pr_wv_str_wp = convert_pr_wvi_to_string(pr_wvi, nlu_t, nlu_tt, tt_to_t_idx, nlu)
pr_sql_i = generate_sql_i(pr_sc, pr_sa, pr_wn, pr_wc, pr_wo, pr_wv_str, nlu)
# Cacluate accuracy
cnt_sc1_list, cnt_sa1_list, cnt_wn1_list, \
cnt_wc1_list, cnt_wo1_list, \
cnt_wvi1_list, cnt_wv1_list = get_cnt_sw_list(g_sc, g_sa, g_wn, g_wc, g_wo, g_wvi,
pr_sc, pr_sa, pr_wn, pr_wc, pr_wo, pr_wvi,
sql_i, pr_sql_i,
mode='train')
cnt_lx1_list = get_cnt_lx_list(cnt_sc1_list, cnt_sa1_list, cnt_wn1_list, cnt_wc1_list,
cnt_wo1_list, cnt_wv1_list)
# lx stands for logical form accuracy
# Execution accuracy test.
if not aug:
cnt_x1_list, g_ans, pr_ans = get_cnt_x_list(engine, tb, g_sc, g_sa, sql_i, pr_sc, pr_sa, pr_sql_i)
else:
cnt_x1_list = [0] * len(t)
g_ans = ['N/A (data augmented'] * len(t)
pr_ans = ['N/A (data augmented'] * len(t)
# statistics
ave_loss += loss.item()
# count
cnt_sc += sum(cnt_sc1_list)
cnt_sa += sum(cnt_sa1_list)
cnt_wn += sum(cnt_wn1_list)
cnt_wc += sum(cnt_wc1_list)
cnt_wo += sum(cnt_wo1_list)
cnt_wvi += sum(cnt_wvi1_list)
cnt_wv += sum(cnt_wv1_list)
cnt_lx += sum(cnt_lx1_list)
cnt_x += sum(cnt_x1_list)
ave_loss /= cnt
acc_sc = cnt_sc / cnt
acc_sa = cnt_sa / cnt
acc_wn = cnt_wn / cnt
acc_wc = cnt_wc / cnt
acc_wo = cnt_wo / cnt
acc_wvi = cnt_wv / cnt
acc_wv = cnt_wv / cnt
acc_lx = cnt_lx / cnt
acc_x = cnt_x / cnt
acc = [ave_loss, acc_sc, acc_sa, acc_wn, acc_wc, acc_wo, acc_wvi, acc_wv, acc_lx, acc_x]
aux_out = [grad_abs_mean_mean, grad_abs_mean_sig, grad_abs_sig_mean]
return acc, aux_out
def report_detail(hds, nlu,
g_sc, g_sa, g_wn, g_wc, g_wo, g_wv, g_wv_str, g_sql_q, g_ans,
pr_sc, pr_sa, pr_wn, pr_wc, pr_wo, pr_wv_str, pr_sql_q, pr_ans,
cnt_list, current_cnt):
cnt_tot, cnt, cnt_sc, cnt_sa, cnt_wn, cnt_wc, cnt_wo, cnt_wv, cnt_wvi, cnt_lx, cnt_x = current_cnt
print(f'cnt = {cnt} / {cnt_tot} ===============================')
print(f'headers: {hds}')
print(f'nlu: {nlu}')
# print(f's_sc: {s_sc[0]}')
# print(f's_sa: {s_sa[0]}')
# print(f's_wn: {s_wn[0]}')
# print(f's_wc: {s_wc[0]}')
# print(f's_wo: {s_wo[0]}')
# print(f's_wv: {s_wv[0][0]}')
print(f'===============================')
print(f'g_sc : {g_sc}')
print(f'pr_sc: {pr_sc}')
print(f'g_sa : {g_sa}')
print(f'pr_sa: {pr_sa}')
print(f'g_wn : {g_wn}')
print(f'pr_wn: {pr_wn}')
print(f'g_wc : {g_wc}')
print(f'pr_wc: {pr_wc}')
print(f'g_wo : {g_wo}')
print(f'pr_wo: {pr_wo}')
print(f'g_wv : {g_wv}')
# print(f'pr_wvi: {pr_wvi}')
print('g_wv_str:', g_wv_str)
print('p_wv_str:', pr_wv_str)
print(f'g_sql_q: {g_sql_q}')
print(f'pr_sql_q: {pr_sql_q}')
print(f'g_ans: {g_ans}')
print(f'pr_ans: {pr_ans}')
print(f'--------------------------------')
print(cnt_list)
print(f'acc_lx = {cnt_lx/cnt:.3f}, acc_x = {cnt_x/cnt:.3f}\n',
f'acc_sc = {cnt_sc/cnt:.3f}, acc_sa = {cnt_sa/cnt:.3f}, acc_wn = {cnt_wn/cnt:.3f}\n',
f'acc_wc = {cnt_wc/cnt:.3f}, acc_wo = {cnt_wo/cnt:.3f}, acc_wv = {cnt_wv/cnt:.3f}')
print(f'===============================')
def test(data_loader, data_table, model, model_bert, bert_config, tokenizer,
max_seq_length,
num_target_layers, detail=False, st_pos=0, cnt_tot=1, EG=False, beam_size=4,
path_db=None, dset_name='test', col_pool_type='start_tok', aug=False):
model.eval()
model_bert.eval()
ave_loss = 0
cnt = 0
cnt_sc = 0
cnt_sa = 0
cnt_wn = 0
cnt_wc = 0
cnt_wo = 0
cnt_wv = 0
cnt_wvi = 0
cnt_lx = 0
cnt_x = 0
cnt_list = []
p_list = [] # List of prediction probabilities.
data_list = [] # Miscellanerous data. Save it for later convenience of analysis.
engine = DBEngine(os.path.join(path_db, f"{dset_name}.db"))
results = []
for iB, t in enumerate(data_loader):
cnt += len(t)
if cnt < st_pos:
continue
# Get fields
nlu, nlu_t, sql_i, sql_q, sql_t, tb, hs_t, hds = get_fields(t, data_table, no_hs_t=True, no_sql_t=True)
g_sc, g_sa, g_wn, g_wc, g_wo, g_wv = get_g(sql_i)
g_wvi_corenlp = get_g_wvi_corenlp(t)
all_encoder_layer, pooled_output, tokens, i_nlu, i_hds, \
l_n, l_hpu, l_hs, \
nlu_tt, t_to_tt_idx, tt_to_t_idx \
= get_bert_output(model_bert, tokenizer, nlu_t, hds, max_seq_length)
try:
g_wvi = get_g_wvi_bert_from_g_wvi_corenlp(t_to_tt_idx, g_wvi_corenlp)
g_wv_str, g_wv_str_wp = convert_pr_wvi_to_string(g_wvi, nlu_t, nlu_tt, tt_to_t_idx, nlu)
except:
# Exception happens when where-condition is not found in nlu_tt.
# In this case, that train example is not used.
# During test, that example considered as wrongly answered.
for b in range(len(nlu)):
results1 = {}
results1["error"] = "Skip happened"
results1["nlu"] = nlu[b]
results1["table_id"] = tb[b]["id"]
results.append(results1)
continue
# model specific part
# score
wemb_n = get_wemb_n(i_nlu, l_n, bert_config.hidden_size,
bert_config.num_hidden_layers, all_encoder_layer, 1)
wemb_h = get_wemb_h_FT_Scalar_1(i_hds, l_hs, bert_config.hidden_size, all_encoder_layer,
col_pool_type=col_pool_type)
# wemb_h = [B, max_header_number, hS]
cls_vec = pooled_output
# No Execution guided decoding
if not EG:
s_sc, s_sa, s_wn, s_wc, s_wo, s_wv = model(wemb_n, l_n, wemb_h, l_hs, cls_vec)
# get loss & step
loss = Loss_sw_se(s_sc, s_sa, s_wn, s_wc, s_wo, s_wv, g_sc, g_sa, g_wn, g_wc, g_wo, g_wvi)
# prediction
pr_sc, pr_sa, pr_wn, pr_wc, pr_wo, pr_wvi = pred_sw_se(s_sc, s_sa, s_wn, s_wc, s_wo, s_wv,)
pr_wv_str, pr_wv_str_wp = convert_pr_wvi_to_string(pr_wvi, nlu_t, nlu_tt, tt_to_t_idx, nlu)
# g_sql_i = generate_sql_i(g_sc, g_sa, g_wn, g_wc, g_wo, g_wv_str, nlu)
pr_sql_i = generate_sql_i(pr_sc, pr_sa, pr_wn, pr_wc, pr_wo, pr_wv_str, nlu)
# calculate probability
p_tot, p_select, p_where, p_sc, p_sa, p_wn, p_wc, p_wo, p_wvi \
= cal_prob(s_sc, s_sa, s_wn, s_wc, s_wo, s_wv,
pr_sc, pr_sa, pr_wn, pr_wc, pr_wo, pr_wvi)
else:
# Execution guided decoding
pr_sc_best, pr_sa_best, pr_wn_based_on_prob, pr_wvi_best, \
pr_sql_i, p_tot, p_select, p_where, p_sc_best, p_sa_best, \
p_wn_best, p_wc_best, p_wo_best, p_wvi_best\
= model.forward_EG(wemb_n, l_n, wemb_h, l_hs, cls_vec, engine, tb,
nlu_t, nlu_tt, tt_to_t_idx, nlu,
beam_size=beam_size)
pr_sc = pr_sc_best
pr_sa = pr_sa_best
pr_wn = pr_wn_based_on_prob
p_sc = p_sc_best
p_sa = p_sa_best
p_wn = p_wn_best
# sort and generate: prob-based-sort (descending) -> wc-idx-based-sort (ascending)
pr_wc, pr_wo, pr_wv_str, pr_wvi, pr_sql_i, \
p_wc, p_wo, p_wvi = sort_and_generate_pr_w(pr_sql_i, pr_wvi_best, p_wc_best, p_wo_best, p_wvi_best)
# Follosing variables are just for the consistency with no-EG case.
pr_wv_str_wp=None
loss = torch.tensor([0])
p_list_batch = [p_tot, p_select, p_where, p_sc, p_sa, p_wn, p_wc, p_wo, p_wvi ]
p_list.append(p_list_batch)
g_sql_q = generate_sql_q(sql_i, tb)
pr_sql_q = generate_sql_q(pr_sql_i, tb)
# Saving for the official evaluation later.
for b, pr_sql_i1 in enumerate(pr_sql_i):
results1 = {}
results1["query"] = pr_sql_i1
results1["table_id"] = tb[b]["id"]
results1["nlu"] = nlu[b]
results.append(results1)
cnt_sc1_list, cnt_sa1_list, cnt_wn1_list, \
cnt_wc1_list, cnt_wo1_list, \
cnt_wvi1_list, cnt_wv1_list = get_cnt_sw_list(g_sc, g_sa,g_wn, g_wc,g_wo, g_wvi,
pr_sc, pr_sa, pr_wn, pr_wc, pr_wo, pr_wvi,
sql_i, pr_sql_i,
mode='test')
cnt_lx1_list = get_cnt_lx_list(cnt_sc1_list, cnt_sa1_list, cnt_wn1_list, cnt_wc1_list,
cnt_wo1_list, cnt_wv1_list)
# Execution accura y test
cnt_x1_list = []
# lx stands for logical form accuracy
# Execution accuracy test.
if not aug:
cnt_x1_list, g_ans, pr_ans = get_cnt_x_list(engine, tb, g_sc, g_sa, sql_i, pr_sc, pr_sa, pr_sql_i)
else:
cnt_x1_list = [0] * len(t)
g_ans = ['N/A (data augmented'] * len(t)
pr_ans = ['N/A (data augmented'] * len(t)
# stat
ave_loss += loss.item()
# count
cnt_sc += sum(cnt_sc1_list)
cnt_sa += sum(cnt_sa1_list)
cnt_wn += sum(cnt_wn1_list)
cnt_wc += sum(cnt_wc1_list)
cnt_wo += sum(cnt_wo1_list)
cnt_wv += sum(cnt_wv1_list)
cnt_wvi += sum(cnt_wvi1_list)
cnt_lx += sum(cnt_lx1_list)
cnt_x += sum(cnt_x1_list)
current_cnt = [cnt_tot, cnt, cnt_sc, cnt_sa, cnt_wn, cnt_wc, cnt_wo, cnt_wv, cnt_wvi, cnt_lx, cnt_x]
cnt_list_batch = [cnt_sc1_list, cnt_sa1_list, cnt_wn1_list, cnt_wc1_list, cnt_wo1_list, cnt_wv1_list, cnt_lx1_list,
cnt_x1_list]
cnt_list.append(cnt_list_batch)
# report
if detail:
report_detail(hds, nlu,
g_sc, g_sa, g_wn, g_wc, g_wo, g_wv, g_wv_str, g_sql_q, g_ans,
pr_sc, pr_sa, pr_wn, pr_wc, pr_wo, pr_wv_str, pr_sql_q, pr_ans,
cnt_list_batch, current_cnt)
data_batch = []
for b, nlu1 in enumerate(nlu):
data1 = [nlu[b], nlu_t[b], sql_i[b], g_sql_q[b], g_ans[b],
pr_sql_i[b], pr_sql_q[b], pr_ans[b], tb[b]]
data_batch.append(data1)
data_list.append(data_batch)
ave_loss /= cnt
acc_sc = cnt_sc / cnt
acc_sa = cnt_sa / cnt
acc_wn = cnt_wn / cnt
acc_wc = cnt_wc / cnt
acc_wo = cnt_wo / cnt
acc_wvi = cnt_wvi / cnt
acc_wv = cnt_wv / cnt
acc_lx = cnt_lx / cnt
acc_x = cnt_x / cnt
acc = [ave_loss, acc_sc, acc_sa, acc_wn, acc_wc, acc_wo, acc_wvi, acc_wv, acc_lx, acc_x]
return acc, results, cnt_list, p_list, data_list
def print_result(epoch, acc, dname):
ave_loss, acc_sc, acc_sa, acc_wn, acc_wc, acc_wo, acc_wvi, acc_wv, acc_lx, acc_x = acc
print(f'{dname} results ------------')
print(
f" Epoch: {epoch}, ave loss: {ave_loss}, acc_sc: {acc_sc:.3f}, acc_sa: {acc_sa:.3f}, acc_wn: {acc_wn:.3f}, \
acc_wc: {acc_wc:.3f}, acc_wo: {acc_wo:.3f}, acc_wvi: {acc_wvi:.3f}, acc_wv: {acc_wv:.3f}, acc_lx: {acc_lx:.3f}, acc_x: {acc_x:.3f}"
)
if __name__ == '__main__':
## 1. Hyper parameters
parser = argparse.ArgumentParser()
args = construct_hyper_param(parser)
## 2. Paths
path_h = '/home/wonseok'
path_wikisql = os.path.join(path_h, 'data', 'wikisql_tok')
BERT_PT_PATH = path_wikisql
path_save_for_evaluation = './'
## 3. Load data
train_data, train_table, dev_data, dev_table, train_loader, dev_loader = get_data(path_wikisql, args)
## 4. Build & Load models
model, model_bert, tokenizer, bert_config = get_models(args, BERT_PT_PATH)
# nsml binding
## 5. Get optimizers
opt, opt_bert = get_opt(model, model_bert, args.model_type)
## 6. Train
acc_lx_t_best = -1
epoch_best = -1
for epoch in range(args.tepoch):
# train
acc_train, aux_out_train = train(train_loader,
train_table,
model,
model_bert,
opt,
bert_config,
tokenizer,
args.max_seq_length,
args.num_target_layers,
args.accumulate_gradients,
opt_bert=opt_bert,
st_pos=0,
path_db=path_wikisql,
dset_name='train',
col_pool_type=args.col_pool_type,
aug=args.aug)
# check DEV
with torch.no_grad():
acc_dev, results_dev, cnt_list_dev, p_list_dev, data_list_dev = test(dev_loader,
dev_table,
model,
model_bert,
bert_config,
tokenizer,
args.max_seq_length,
args.num_target_layers,
detail=False,
path_db=path_wikisql,
st_pos=0,
dset_name='dev', EG=args.EG,
col_pool_type=args.col_pool_type,
beam_size=args.beam_size,
aug=args.aug)
print_result(epoch, acc_train, 'train')
print_result(epoch, acc_dev, 'dev')
# save results for the offical evaluation
save_for_evaluation(path_save_for_evaluation, results_dev, 'dev')
# save best model
# Based on Dev Set logical accuracy lx
acc_lx_t = acc_dev[-2]
if acc_lx_t > acc_lx_t_best:
acc_lx_t_best = acc_lx_t
epoch_best = epoch
# save best model
state = {'model': model.state_dict()}
torch.save(state, os.path.join('.', 'model_best.pt'))
state = {'model_bert': model_bert.state_dict()}
torch.save(state, os.path.join('.', 'model_bert_best.pt'))
print(f" Best Dev lx acc: {acc_lx_t_best} at epoch: {epoch_best}")