-
Notifications
You must be signed in to change notification settings - Fork 106
/
Copy pathverts.py
executable file
·124 lines (100 loc) · 3.34 KB
/
verts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
'''
Copyright 2017 Javier Romero, Dimitrios Tzionas, Michael J Black and the Max Planck Gesellschaft. All rights reserved.
This software is provided for research purposes only.
By using this software you agree to the terms of the MANO/SMPL+H Model license here http://mano.is.tue.mpg.de/license
More information about MANO/SMPL+H is available at http://mano.is.tue.mpg.de.
For comments or questions, please email us at: [email protected]
About this file:
================
This file defines a wrapper for the loading functions of the MANO model.
Modules included:
- load_model:
loads the MANO model from a given file location (i.e. a .pkl file location),
or a dictionary object.
'''
import chumpy
import mano.webuser.lbs as lbs
from mano.webuser.posemapper import posemap
import scipy.sparse as sp
from chumpy.ch import MatVecMult
def ischumpy(x):
return hasattr(x, 'dterms')
def verts_decorated(trans,
pose,
v_template,
J_regressor,
weights,
kintree_table,
bs_style,
f,
bs_type=None,
posedirs=None,
betas=None,
shapedirs=None,
want_Jtr=False):
for which in [
trans, pose, v_template, weights, posedirs, betas, shapedirs
]:
if which is not None:
assert ischumpy(which)
v = v_template
if shapedirs is not None:
if betas is None:
betas = chumpy.zeros(shapedirs.shape[-1])
v_shaped = v + shapedirs.dot(betas)
else:
v_shaped = v
if posedirs is not None:
v_posed = v_shaped + posedirs.dot(posemap(bs_type)(pose))
else:
v_posed = v_shaped
v = v_posed
if sp.issparse(J_regressor):
J_tmpx = MatVecMult(J_regressor, v_shaped[:, 0])
J_tmpy = MatVecMult(J_regressor, v_shaped[:, 1])
J_tmpz = MatVecMult(J_regressor, v_shaped[:, 2])
J = chumpy.vstack((J_tmpx, J_tmpy, J_tmpz)).T
else:
assert (ischumpy(J))
assert (bs_style == 'lbs')
result, Jtr = lbs.verts_core(
pose, v, J, weights, kintree_table, want_Jtr=True, xp=chumpy)
tr = trans.reshape((1, 3))
result = result + tr
Jtr = Jtr + tr
result.trans = trans
result.f = f
result.pose = pose
result.v_template = v_template
result.J = J
result.J_regressor = J_regressor
result.weights = weights
result.kintree_table = kintree_table
result.bs_style = bs_style
result.bs_type = bs_type
if posedirs is not None:
result.posedirs = posedirs
result.v_posed = v_posed
if shapedirs is not None:
result.shapedirs = shapedirs
result.betas = betas
result.v_shaped = v_shaped
if want_Jtr:
result.J_transformed = Jtr
return result
def verts_core(pose,
v,
J,
weights,
kintree_table,
bs_style,
want_Jtr=False,
xp=chumpy):
if xp == chumpy:
assert (hasattr(pose, 'dterms'))
assert (hasattr(v, 'dterms'))
assert (hasattr(J, 'dterms'))
assert (hasattr(weights, 'dterms'))
assert (bs_style == 'lbs')
result = lbs.verts_core(pose, v, J, weights, kintree_table, want_Jtr, xp)
return result