-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathparser.ecl
9835 lines (8800 loc) · 261 KB
/
parser.ecl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
INTEGER traceDataset() := EMBED(C++)
#include <bits/stdc++.h>
#include<iostream>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <float.h>
#include <math.h>
#include <time.h>
#include <stdint.h>
#include <sys/time.h>
#include <termios.h>
#include <unistd.h>
#include <assert.h>
using namespace std;
FILE *ocsv;
// SHA256.h
#ifndef SHA256_H
#define SHA256_H
void computeSHA256(const void *input, // A pointer to the input data to have the SHA256 hash computed for it.
uint32_t size, // the length of the input data
uint8_t destHash[32]); // The output 256 bit (32 byte) hash
#endif
// SHA256.h
// SHA256.cpp
#ifdef _MSC_VER
#pragma warning(disable:4718) // Disable a compiler optimization warning on visual studio
#endif
#define SHA256_HASH_SIZE 32 /* 256 bit */
#define SHA256_HASH_WORDS 8
#define SHA256_UNROLL 64 // This define determines how much loop unrolling is done when computing the hash;
// Uncomment this line of code if you want this snippet to compute the endian mode of your processor at run time; rather than at compile time.
//#define RUNTIME_ENDIAN
// Uncomment this line of code if you want this routine to compile for a big-endian processor
//#define WORDS_BIGENDIAN
typedef struct
{
uint64_t totalLength;
uint32_t hash[SHA256_HASH_WORDS];
uint32_t bufferLength;
union
{
uint32_t words[16];
uint8_t bytes[64];
} buffer;
} sha256_ctx_t;
void sha256_init(sha256_ctx_t * sc);
void sha256_update(sha256_ctx_t * sc, const void *data, uint32_t len);
void sha256_finalize(sha256_ctx_t * sc, uint8_t hash[SHA256_HASH_SIZE]);
#define ROTL(x, n) (((x) << (n)) | ((x) >> (32 - (n))))
#define ROTR(x, n) (((x) >> (n)) | ((x) << (32 - (n))))
#define Ch(x, y, z) ((z) ^ ((x) & ((y) ^ (z))))
#define Maj(x, y, z) (((x) & ((y) | (z))) | ((y) & (z)))
#define SIGMA0(x) (ROTR((x), 2) ^ ROTR((x), 13) ^ ROTR((x), 22))
#define SIGMA1(x) (ROTR((x), 6) ^ ROTR((x), 11) ^ ROTR((x), 25))
#define sigma0(x) (ROTR((x), 7) ^ ROTR((x), 18) ^ ((x) >> 3))
#define sigma1(x) (ROTR((x), 17) ^ ROTR((x), 19) ^ ((x) >> 10))
#define DO_ROUND() { \
t1 = h + SIGMA1(e) + Ch(e, f, g) + *(Kp++) + *(W++); \
t2 = SIGMA0(a) + Maj(a, b, c); \
h = g; \
g = f; \
f = e; \
e = d + t1; \
d = c; \
c = b; \
b = a; \
a = t1 + t2; \
}
static const uint32_t K[64] = {
0x428a2f98L, 0x71374491L, 0xb5c0fbcfL, 0xe9b5dba5L,
0x3956c25bL, 0x59f111f1L, 0x923f82a4L, 0xab1c5ed5L,
0xd807aa98L, 0x12835b01L, 0x243185beL, 0x550c7dc3L,
0x72be5d74L, 0x80deb1feL, 0x9bdc06a7L, 0xc19bf174L,
0xe49b69c1L, 0xefbe4786L, 0x0fc19dc6L, 0x240ca1ccL,
0x2de92c6fL, 0x4a7484aaL, 0x5cb0a9dcL, 0x76f988daL,
0x983e5152L, 0xa831c66dL, 0xb00327c8L, 0xbf597fc7L,
0xc6e00bf3L, 0xd5a79147L, 0x06ca6351L, 0x14292967L,
0x27b70a85L, 0x2e1b2138L, 0x4d2c6dfcL, 0x53380d13L,
0x650a7354L, 0x766a0abbL, 0x81c2c92eL, 0x92722c85L,
0xa2bfe8a1L, 0xa81a664bL, 0xc24b8b70L, 0xc76c51a3L,
0xd192e819L, 0xd6990624L, 0xf40e3585L, 0x106aa070L,
0x19a4c116L, 0x1e376c08L, 0x2748774cL, 0x34b0bcb5L,
0x391c0cb3L, 0x4ed8aa4aL, 0x5b9cca4fL, 0x682e6ff3L,
0x748f82eeL, 0x78a5636fL, 0x84c87814L, 0x8cc70208L,
0x90befffaL, 0xa4506cebL, 0xbef9a3f7L, 0xc67178f2L
};
#ifndef RUNTIME_ENDIAN
#ifdef WORDS_BIGENDIAN
#define BYTESWAP(x) (x)
#define BYTESWAP64(x) (x)
#else /* WORDS_BIGENDIAN */
#define BYTESWAP(x) ((ROTR((x), 8) & 0xff00ff00L) | \
(ROTL((x), 8) & 0x00ff00ffL))
#define BYTESWAP64(x) _byteswap64(x)
static inline uint64_t _byteswap64(uint64_t x)
{
uint32_t a = x >> 32;
uint32_t b = (uint32_t) x;
return ((uint64_t) BYTESWAP(b) << 32) | (uint64_t) BYTESWAP(a);
}
#endif /* WORDS_BIGENDIAN */
#else /* !RUNTIME_ENDIAN */
static int littleEndian;
#define BYTESWAP(x) _byteswap(x)
#define BYTESWAP64(x) _byteswap64(x)
#define _BYTESWAP(x) ((ROTR((x), 8) & 0xff00ff00L) | \
(ROTL((x), 8) & 0x00ff00ffL))
#define _BYTESWAP64(x) __byteswap64(x)
static inline uint64_t __byteswap64(uint64_t x)
{
uint32_t a = x >> 32;
uint32_t b = (uint32_t) x;
return ((uint64_t) _BYTESWAP(b) << 32) | (uint64_t) _BYTESWAP(a);
}
static inline uint32_t _byteswap(uint32_t x)
{
if (!littleEndian)
return x;
else
return _BYTESWAP(x);
}
static inline uint64_t _byteswap64(uint64_t x)
{
if (!littleEndian)
return x;
else
return _BYTESWAP64(x);
}
static inline void setEndian(void)
{
union {
uint32_t w;
uint8_t b[4];
} endian;
endian.w = 1L;
littleEndian = endian.b[0] != 0;
}
#endif /* !RUNTIME_ENDIAN */
static const uint8_t padding[64] = {
0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
void sha256_init(sha256_ctx_t * sc)
{
#ifdef RUNTIME_ENDIAN
setEndian();
#endif /* RUNTIME_ENDIAN */
sc->totalLength = 0LL;
sc->hash[0] = 0x6a09e667L;
sc->hash[1] = 0xbb67ae85L;
sc->hash[2] = 0x3c6ef372L;
sc->hash[3] = 0xa54ff53aL;
sc->hash[4] = 0x510e527fL;
sc->hash[5] = 0x9b05688cL;
sc->hash[6] = 0x1f83d9abL;
sc->hash[7] = 0x5be0cd19L;
sc->bufferLength = 0L;
}
static void burnStack(int size)
{
char buf[128];
memset(buf, 0, sizeof(buf));
size -= sizeof(buf);
if (size > 0)
burnStack(size);
}
static void SHA256Guts(sha256_ctx_t * sc, const uint32_t * cbuf)
{
uint32_t buf[64];
uint32_t *W, *W2, *W7, *W15, *W16;
uint32_t a, b, c, d, e, f, g, h;
uint32_t t1, t2;
const uint32_t *Kp;
int i;
W = buf;
for (i = 15; i >= 0; i--) {
*(W++) = BYTESWAP(*cbuf);
cbuf++;
}
W16 = &buf[0];
W15 = &buf[1];
W7 = &buf[9];
W2 = &buf[14];
for (i = 47; i >= 0; i--) {
*(W++) = sigma1(*W2) + *(W7++) + sigma0(*W15) + *(W16++);
W2++;
W15++;
}
a = sc->hash[0];
b = sc->hash[1];
c = sc->hash[2];
d = sc->hash[3];
e = sc->hash[4];
f = sc->hash[5];
g = sc->hash[6];
h = sc->hash[7];
Kp = K;
W = buf;
#ifndef SHA256_UNROLL
#define SHA256_UNROLL 1
#endif /* !SHA256_UNROLL */
#if SHA256_UNROLL == 1
for (i = 63; i >= 0; i--)
DO_ROUND();
#elif SHA256_UNROLL == 2
for (i = 31; i >= 0; i--) {
DO_ROUND();
DO_ROUND();
}
#elif SHA256_UNROLL == 4
for (i = 15; i >= 0; i--) {
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
}
#elif SHA256_UNROLL == 8
for (i = 7; i >= 0; i--) {
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
}
#elif SHA256_UNROLL == 16
for (i = 3; i >= 0; i--) {
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
}
#elif SHA256_UNROLL == 32
for (i = 1; i >= 0; i--) {
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
}
#elif SHA256_UNROLL == 64
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
DO_ROUND();
#else
#error "SHA256_UNROLL must be 1, 2, 4, 8, 16, 32, or 64!"
#endif
sc->hash[0] += a;
sc->hash[1] += b;
sc->hash[2] += c;
sc->hash[3] += d;
sc->hash[4] += e;
sc->hash[5] += f;
sc->hash[6] += g;
sc->hash[7] += h;
}
void sha256_update(sha256_ctx_t * sc, const void *data, uint32_t len)
{
uint32_t bufferBytesLeft;
uint32_t bytesToCopy;
int needBurn = 0;
if (sc->bufferLength)
{
bufferBytesLeft = 64L - sc->bufferLength;
bytesToCopy = bufferBytesLeft;
if (bytesToCopy > len)
{
bytesToCopy = len;
}
memcpy(&sc->buffer.bytes[sc->bufferLength], data, bytesToCopy);
sc->totalLength += bytesToCopy * 8L;
sc->bufferLength += bytesToCopy;
data = ((uint8_t *) data) + bytesToCopy;
len -= bytesToCopy;
if (sc->bufferLength == 64L)
{
SHA256Guts(sc, sc->buffer.words);
needBurn = 1;
sc->bufferLength = 0L;
}
}
while (len > 63L)
{
sc->totalLength += 512L;
SHA256Guts(sc, (const uint32_t *)data);
needBurn = 1;
data = ((uint8_t *) data) + 64L;
len -= 64L;
}
if (len)
{
memcpy(&sc->buffer.bytes[sc->bufferLength], data, len);
sc->totalLength += len * 8L;
sc->bufferLength += len;
}
if (needBurn)
{
burnStack(sizeof(uint32_t[74]) + sizeof(uint32_t *[6]) + sizeof(int));
}
}
void sha256_finalize(sha256_ctx_t * sc, uint8_t hash[SHA256_HASH_SIZE])
{
uint32_t bytesToPad;
uint64_t lengthPad;
int i;
bytesToPad = 120L - sc->bufferLength;
if (bytesToPad > 64L)
{
bytesToPad -= 64L;
}
lengthPad = BYTESWAP64(sc->totalLength);
sha256_update(sc, padding, bytesToPad);
sha256_update(sc, &lengthPad, 8L);
if (hash)
{
for (i = 0; i < SHA256_HASH_WORDS; i++)
{
*((uint32_t *) hash) = BYTESWAP(sc->hash[i]);
hash += 4;
}
}
}
void computeSHA256(const void *input,uint32_t size,uint8_t destHash[32])
{
sha256_ctx_t sc;
sha256_init(&sc);
sha256_update(&sc,input,size);
sha256_finalize(&sc,destHash);
}
// SHA256.cpp
// RIPEMD160.h
#ifndef RIPEMD160_H
#define RIPEMD160_H
void computeRIPEMD160(const void *input, // The input data to compute the hash for.
uint32_t length, // The length of the input data
uint8_t hashcode[20]); // The output hash of 160 bits (20 bytes)
#endif
// RIPEMD160.h
// RIPEMD160.cpp
/* collect four bytes into one word: */
#define BYTES_TO_DWORD(strptr) \
(((uint32_t) *((strptr)+3) << 24) | \
((uint32_t) *((strptr)+2) << 16) | \
((uint32_t) *((strptr)+1) << 8) | \
((uint32_t) *(strptr)))
/* ROL(x, n) cyclically rotates x over n bits to the left */
/* x must be of an unsigned 32 bits type and 0 <= n < 32. */
#define ROL(x, n) (((x) << (n)) | ((x) >> (32-(n))))
/* the five basic functions F(), G() and H() */
#define F(x, y, z) ((x) ^ (y) ^ (z))
#define G(x, y, z) (((x) & (y)) | (~(x) & (z)))
#define H(x, y, z) (((x) | ~(y)) ^ (z))
#define I(x, y, z) (((x) & (z)) | ((y) & ~(z)))
#define J(x, y, z) ((x) ^ ((y) | ~(z)))
/* the ten basic operations FF() through III() */
#define FF(a, b, c, d, e, x, s) {\
(a) += F((b), (c), (d)) + (x);\
(a) = ROL((a), (s)) + (e);\
(c) = ROL((c), 10);\
}
#define GG(a, b, c, d, e, x, s) {\
(a) += G((b), (c), (d)) + (x) + 0x5a827999UL;\
(a) = ROL((a), (s)) + (e);\
(c) = ROL((c), 10);\
}
#define HH(a, b, c, d, e, x, s) {\
(a) += H((b), (c), (d)) + (x) + 0x6ed9eba1UL;\
(a) = ROL((a), (s)) + (e);\
(c) = ROL((c), 10);\
}
#define II(a, b, c, d, e, x, s) {\
(a) += I((b), (c), (d)) + (x) + 0x8f1bbcdcUL;\
(a) = ROL((a), (s)) + (e);\
(c) = ROL((c), 10);\
}
#define JJ(a, b, c, d, e, x, s) {\
(a) += J((b), (c), (d)) + (x) + 0xa953fd4eUL;\
(a) = ROL((a), (s)) + (e);\
(c) = ROL((c), 10);\
}
#define FFF(a, b, c, d, e, x, s) {\
(a) += F((b), (c), (d)) + (x);\
(a) = ROL((a), (s)) + (e);\
(c) = ROL((c), 10);\
}
#define GGG(a, b, c, d, e, x, s) {\
(a) += G((b), (c), (d)) + (x) + 0x7a6d76e9UL;\
(a) = ROL((a), (s)) + (e);\
(c) = ROL((c), 10);\
}
#define HHH(a, b, c, d, e, x, s) {\
(a) += H((b), (c), (d)) + (x) + 0x6d703ef3UL;\
(a) = ROL((a), (s)) + (e);\
(c) = ROL((c), 10);\
}
#define III(a, b, c, d, e, x, s) {\
(a) += I((b), (c), (d)) + (x) + 0x5c4dd124UL;\
(a) = ROL((a), (s)) + (e);\
(c) = ROL((c), 10);\
}
#define JJJ(a, b, c, d, e, x, s) {\
(a) += J((b), (c), (d)) + (x) + 0x50a28be6UL;\
(a) = ROL((a), (s)) + (e);\
(c) = ROL((c), 10);\
}
/********************************************************************/
/* function prototypes */
void MDinit(uint32_t *MDbuf);
/*
* initializes MDbuffer to "magic constants"
*/
void compress(uint32_t *MDbuf, uint32_t *X);
/*
* the compression function.
* transforms MDbuf using message bytes X[0] through X[15]
*/
void MDfinish(uint32_t *MDbuf,const uint8_t *strptr, uint32_t lswlen, uint32_t mswlen);
/*
* puts bytes from strptr into X and pad out; appends length
* and finally, compresses the last block(s)
* note: length in bits == 8 * (lswlen + 2^32 mswlen).
* note: there are (lswlen mod 64) bytes left in strptr.
*/
/********************************************************************/
void MDinit(uint32_t *MDbuf)
{
MDbuf[0] = 0x67452301UL;
MDbuf[1] = 0xefcdab89UL;
MDbuf[2] = 0x98badcfeUL;
MDbuf[3] = 0x10325476UL;
MDbuf[4] = 0xc3d2e1f0UL;
return;
}
/********************************************************************/
void compress(uint32_t *MDbuf, uint32_t *X)
{
uint32_t aa = MDbuf[0], bb = MDbuf[1], cc = MDbuf[2],
dd = MDbuf[3], ee = MDbuf[4];
uint32_t aaa = MDbuf[0], bbb = MDbuf[1], ccc = MDbuf[2],
ddd = MDbuf[3], eee = MDbuf[4];
/* round 1 */
FF(aa, bb, cc, dd, ee, X[ 0], 11);
FF(ee, aa, bb, cc, dd, X[ 1], 14);
FF(dd, ee, aa, bb, cc, X[ 2], 15);
FF(cc, dd, ee, aa, bb, X[ 3], 12);
FF(bb, cc, dd, ee, aa, X[ 4], 5);
FF(aa, bb, cc, dd, ee, X[ 5], 8);
FF(ee, aa, bb, cc, dd, X[ 6], 7);
FF(dd, ee, aa, bb, cc, X[ 7], 9);
FF(cc, dd, ee, aa, bb, X[ 8], 11);
FF(bb, cc, dd, ee, aa, X[ 9], 13);
FF(aa, bb, cc, dd, ee, X[10], 14);
FF(ee, aa, bb, cc, dd, X[11], 15);
FF(dd, ee, aa, bb, cc, X[12], 6);
FF(cc, dd, ee, aa, bb, X[13], 7);
FF(bb, cc, dd, ee, aa, X[14], 9);
FF(aa, bb, cc, dd, ee, X[15], 8);
/* round 2 */
GG(ee, aa, bb, cc, dd, X[ 7], 7);
GG(dd, ee, aa, bb, cc, X[ 4], 6);
GG(cc, dd, ee, aa, bb, X[13], 8);
GG(bb, cc, dd, ee, aa, X[ 1], 13);
GG(aa, bb, cc, dd, ee, X[10], 11);
GG(ee, aa, bb, cc, dd, X[ 6], 9);
GG(dd, ee, aa, bb, cc, X[15], 7);
GG(cc, dd, ee, aa, bb, X[ 3], 15);
GG(bb, cc, dd, ee, aa, X[12], 7);
GG(aa, bb, cc, dd, ee, X[ 0], 12);
GG(ee, aa, bb, cc, dd, X[ 9], 15);
GG(dd, ee, aa, bb, cc, X[ 5], 9);
GG(cc, dd, ee, aa, bb, X[ 2], 11);
GG(bb, cc, dd, ee, aa, X[14], 7);
GG(aa, bb, cc, dd, ee, X[11], 13);
GG(ee, aa, bb, cc, dd, X[ 8], 12);
/* round 3 */
HH(dd, ee, aa, bb, cc, X[ 3], 11);
HH(cc, dd, ee, aa, bb, X[10], 13);
HH(bb, cc, dd, ee, aa, X[14], 6);
HH(aa, bb, cc, dd, ee, X[ 4], 7);
HH(ee, aa, bb, cc, dd, X[ 9], 14);
HH(dd, ee, aa, bb, cc, X[15], 9);
HH(cc, dd, ee, aa, bb, X[ 8], 13);
HH(bb, cc, dd, ee, aa, X[ 1], 15);
HH(aa, bb, cc, dd, ee, X[ 2], 14);
HH(ee, aa, bb, cc, dd, X[ 7], 8);
HH(dd, ee, aa, bb, cc, X[ 0], 13);
HH(cc, dd, ee, aa, bb, X[ 6], 6);
HH(bb, cc, dd, ee, aa, X[13], 5);
HH(aa, bb, cc, dd, ee, X[11], 12);
HH(ee, aa, bb, cc, dd, X[ 5], 7);
HH(dd, ee, aa, bb, cc, X[12], 5);
/* round 4 */
II(cc, dd, ee, aa, bb, X[ 1], 11);
II(bb, cc, dd, ee, aa, X[ 9], 12);
II(aa, bb, cc, dd, ee, X[11], 14);
II(ee, aa, bb, cc, dd, X[10], 15);
II(dd, ee, aa, bb, cc, X[ 0], 14);
II(cc, dd, ee, aa, bb, X[ 8], 15);
II(bb, cc, dd, ee, aa, X[12], 9);
II(aa, bb, cc, dd, ee, X[ 4], 8);
II(ee, aa, bb, cc, dd, X[13], 9);
II(dd, ee, aa, bb, cc, X[ 3], 14);
II(cc, dd, ee, aa, bb, X[ 7], 5);
II(bb, cc, dd, ee, aa, X[15], 6);
II(aa, bb, cc, dd, ee, X[14], 8);
II(ee, aa, bb, cc, dd, X[ 5], 6);
II(dd, ee, aa, bb, cc, X[ 6], 5);
II(cc, dd, ee, aa, bb, X[ 2], 12);
/* round 5 */
JJ(bb, cc, dd, ee, aa, X[ 4], 9);
JJ(aa, bb, cc, dd, ee, X[ 0], 15);
JJ(ee, aa, bb, cc, dd, X[ 5], 5);
JJ(dd, ee, aa, bb, cc, X[ 9], 11);
JJ(cc, dd, ee, aa, bb, X[ 7], 6);
JJ(bb, cc, dd, ee, aa, X[12], 8);
JJ(aa, bb, cc, dd, ee, X[ 2], 13);
JJ(ee, aa, bb, cc, dd, X[10], 12);
JJ(dd, ee, aa, bb, cc, X[14], 5);
JJ(cc, dd, ee, aa, bb, X[ 1], 12);
JJ(bb, cc, dd, ee, aa, X[ 3], 13);
JJ(aa, bb, cc, dd, ee, X[ 8], 14);
JJ(ee, aa, bb, cc, dd, X[11], 11);
JJ(dd, ee, aa, bb, cc, X[ 6], 8);
JJ(cc, dd, ee, aa, bb, X[15], 5);
JJ(bb, cc, dd, ee, aa, X[13], 6);
/* parallel round 1 */
JJJ(aaa, bbb, ccc, ddd, eee, X[ 5], 8);
JJJ(eee, aaa, bbb, ccc, ddd, X[14], 9);
JJJ(ddd, eee, aaa, bbb, ccc, X[ 7], 9);
JJJ(ccc, ddd, eee, aaa, bbb, X[ 0], 11);
JJJ(bbb, ccc, ddd, eee, aaa, X[ 9], 13);
JJJ(aaa, bbb, ccc, ddd, eee, X[ 2], 15);
JJJ(eee, aaa, bbb, ccc, ddd, X[11], 15);
JJJ(ddd, eee, aaa, bbb, ccc, X[ 4], 5);
JJJ(ccc, ddd, eee, aaa, bbb, X[13], 7);
JJJ(bbb, ccc, ddd, eee, aaa, X[ 6], 7);
JJJ(aaa, bbb, ccc, ddd, eee, X[15], 8);
JJJ(eee, aaa, bbb, ccc, ddd, X[ 8], 11);
JJJ(ddd, eee, aaa, bbb, ccc, X[ 1], 14);
JJJ(ccc, ddd, eee, aaa, bbb, X[10], 14);
JJJ(bbb, ccc, ddd, eee, aaa, X[ 3], 12);
JJJ(aaa, bbb, ccc, ddd, eee, X[12], 6);
/* parallel round 2 */
III(eee, aaa, bbb, ccc, ddd, X[ 6], 9);
III(ddd, eee, aaa, bbb, ccc, X[11], 13);
III(ccc, ddd, eee, aaa, bbb, X[ 3], 15);
III(bbb, ccc, ddd, eee, aaa, X[ 7], 7);
III(aaa, bbb, ccc, ddd, eee, X[ 0], 12);
III(eee, aaa, bbb, ccc, ddd, X[13], 8);
III(ddd, eee, aaa, bbb, ccc, X[ 5], 9);
III(ccc, ddd, eee, aaa, bbb, X[10], 11);
III(bbb, ccc, ddd, eee, aaa, X[14], 7);
III(aaa, bbb, ccc, ddd, eee, X[15], 7);
III(eee, aaa, bbb, ccc, ddd, X[ 8], 12);
III(ddd, eee, aaa, bbb, ccc, X[12], 7);
III(ccc, ddd, eee, aaa, bbb, X[ 4], 6);
III(bbb, ccc, ddd, eee, aaa, X[ 9], 15);
III(aaa, bbb, ccc, ddd, eee, X[ 1], 13);
III(eee, aaa, bbb, ccc, ddd, X[ 2], 11);
/* parallel round 3 */
HHH(ddd, eee, aaa, bbb, ccc, X[15], 9);
HHH(ccc, ddd, eee, aaa, bbb, X[ 5], 7);
HHH(bbb, ccc, ddd, eee, aaa, X[ 1], 15);
HHH(aaa, bbb, ccc, ddd, eee, X[ 3], 11);
HHH(eee, aaa, bbb, ccc, ddd, X[ 7], 8);
HHH(ddd, eee, aaa, bbb, ccc, X[14], 6);
HHH(ccc, ddd, eee, aaa, bbb, X[ 6], 6);
HHH(bbb, ccc, ddd, eee, aaa, X[ 9], 14);
HHH(aaa, bbb, ccc, ddd, eee, X[11], 12);
HHH(eee, aaa, bbb, ccc, ddd, X[ 8], 13);
HHH(ddd, eee, aaa, bbb, ccc, X[12], 5);
HHH(ccc, ddd, eee, aaa, bbb, X[ 2], 14);
HHH(bbb, ccc, ddd, eee, aaa, X[10], 13);
HHH(aaa, bbb, ccc, ddd, eee, X[ 0], 13);
HHH(eee, aaa, bbb, ccc, ddd, X[ 4], 7);
HHH(ddd, eee, aaa, bbb, ccc, X[13], 5);
/* parallel round 4 */
GGG(ccc, ddd, eee, aaa, bbb, X[ 8], 15);
GGG(bbb, ccc, ddd, eee, aaa, X[ 6], 5);
GGG(aaa, bbb, ccc, ddd, eee, X[ 4], 8);
GGG(eee, aaa, bbb, ccc, ddd, X[ 1], 11);
GGG(ddd, eee, aaa, bbb, ccc, X[ 3], 14);
GGG(ccc, ddd, eee, aaa, bbb, X[11], 14);
GGG(bbb, ccc, ddd, eee, aaa, X[15], 6);
GGG(aaa, bbb, ccc, ddd, eee, X[ 0], 14);
GGG(eee, aaa, bbb, ccc, ddd, X[ 5], 6);
GGG(ddd, eee, aaa, bbb, ccc, X[12], 9);
GGG(ccc, ddd, eee, aaa, bbb, X[ 2], 12);
GGG(bbb, ccc, ddd, eee, aaa, X[13], 9);
GGG(aaa, bbb, ccc, ddd, eee, X[ 9], 12);
GGG(eee, aaa, bbb, ccc, ddd, X[ 7], 5);
GGG(ddd, eee, aaa, bbb, ccc, X[10], 15);
GGG(ccc, ddd, eee, aaa, bbb, X[14], 8);
/* parallel round 5 */
FFF(bbb, ccc, ddd, eee, aaa, X[12] , 8);
FFF(aaa, bbb, ccc, ddd, eee, X[15] , 5);
FFF(eee, aaa, bbb, ccc, ddd, X[10] , 12);
FFF(ddd, eee, aaa, bbb, ccc, X[ 4] , 9);
FFF(ccc, ddd, eee, aaa, bbb, X[ 1] , 12);
FFF(bbb, ccc, ddd, eee, aaa, X[ 5] , 5);
FFF(aaa, bbb, ccc, ddd, eee, X[ 8] , 14);
FFF(eee, aaa, bbb, ccc, ddd, X[ 7] , 6);
FFF(ddd, eee, aaa, bbb, ccc, X[ 6] , 8);
FFF(ccc, ddd, eee, aaa, bbb, X[ 2] , 13);
FFF(bbb, ccc, ddd, eee, aaa, X[13] , 6);
FFF(aaa, bbb, ccc, ddd, eee, X[14] , 5);
FFF(eee, aaa, bbb, ccc, ddd, X[ 0] , 15);
FFF(ddd, eee, aaa, bbb, ccc, X[ 3] , 13);
FFF(ccc, ddd, eee, aaa, bbb, X[ 9] , 11);
FFF(bbb, ccc, ddd, eee, aaa, X[11] , 11);
/* combine results */
ddd += cc + MDbuf[1]; /* final result for MDbuf[0] */
MDbuf[1] = MDbuf[2] + dd + eee;
MDbuf[2] = MDbuf[3] + ee + aaa;
MDbuf[3] = MDbuf[4] + aa + bbb;
MDbuf[4] = MDbuf[0] + bb + ccc;
MDbuf[0] = ddd;
return;
}
/********************************************************************/
void MDfinish(uint32_t *MDbuf,const uint8_t *strptr, uint32_t lswlen, uint32_t mswlen)
{
unsigned int i; /* counter */
uint32_t X[16]; /* message words */
memset(X, 0, 16*sizeof(uint32_t));
/* put bytes from strptr into X */
for (i=0; i<(lswlen&63); i++) {
/* uint8_t i goes into word X[i div 4] at pos. 8*(i mod 4) */
X[i>>2] ^= (uint32_t) *strptr++ << (8 * (i&3));
}
/* append the bit m_n == 1 */
X[(lswlen>>2)&15] ^= (uint32_t)1 << (8*(lswlen&3) + 7);
if ((lswlen & 63) > 55) {
/* length goes to next block */
compress(MDbuf, X);
memset(X, 0, 16*sizeof(uint32_t));
}
/* append length in bits*/
X[14] = lswlen << 3;
X[15] = (lswlen >> 29) | (mswlen << 3);
compress(MDbuf, X);
return;
}
#define RMDsize 160
void computeRIPEMD160(const void *_message,uint32_t length,uint8_t hashcode[20])
/*
* returns RMD(message)
* message should be a string terminated by '\0'
*/
{
const uint8_t *message = (const uint8_t *)_message;
uint32_t MDbuf[RMDsize/32]; /* contains (A, B, C, D(, E)) */
uint32_t X[16]; /* current 16-word chunk */
/* initialize */
MDinit(MDbuf);
/* process message in 16-word chunks */
for (uint32_t nbytes=length; nbytes > 63; nbytes-=64)
{
for (uint32_t i=0; i<16; i++)
{
X[i] = BYTES_TO_DWORD(message);
message += 4;
}
compress(MDbuf, X);
} /* length mod 64 bytes left */
/* finish: */
MDfinish(MDbuf, message, length, 0);
for (uint32_t i=0; i<RMDsize/8; i+=4)
{
hashcode[i] = (uint8_t)(MDbuf[i>>2]); /* implicit cast to uint8_t */
hashcode[i+1] = (uint8_t)(MDbuf[i>>2] >> 8); /* extracts the 8 least */
hashcode[i+2] = (uint8_t)(MDbuf[i>>2] >> 16); /* significant bits. */
hashcode[i+3] = (uint8_t)(MDbuf[i>>2] >> 24);
}
}
/************************ end of file rmd160.c **********************/
// RIPEMD160.cpp
// Base58.h
#ifndef BASE58_H
#define BASE58_H
bool encodeBase58(const uint8_t *bigNumber, // The block of memory corresponding to the 'big number'
uint32_t length, // The number of bytes in the 'big-number'; this will be 25 for a bitcoin address
bool sourceIsBigEndian, // True if the input number is in big-endian format (this will be true for a bitcoin address)
char *output, // The address to store the output string.
uint32_t maxStrLen); // the maximum length of the output string
// Decode a previously encoded base58 string. Returns the number of bytes in the decoded binary stream. If there was an error decoded it
// then it returns a zero byte length.
uint32_t decodeBase58(const char *string, // The base58 encoded string
uint8_t *output, // The output binary buffer
uint32_t maxOutputLength, // The maximum output length of the binary buffer.
bool outputIsBigEndian); // Whether or not the output is considered big endian and therefore needs to be byte reverse; true for bitcoin addresses
#endif
// Base58.h
// Base58.cpp
#ifdef _MSC_VER
#pragma warning(disable:4718)
#pragma warning(disable:4996)
#endif
#define MAX_BIG_NUMBER 256 // this code snippet only supports big nubmers up to 256 bytes in length
/**
@brief Contains byte data with the length of this data to represent a large integer. The byte data is in little-endian which stores the smallest byte first.
*/
class BigNumber
{
public:
BigNumber(const uint8_t *sourceData,uint32_t len)
{
assert(len<MAX_BIG_NUMBER);
memset(data,0,MAX_BIG_NUMBER);
if ( sourceData )
{
memcpy(data,sourceData,len);
}
length = len;
}
uint8_t data[MAX_BIG_NUMBER]; /**< The byte data. Should be little-endian */
uint32_t length; /**< The length of this data in bytes */
};
// Enums
enum BigNumberCompare
{
CB_COMPARE_MORE_THAN = 1,
CB_COMPARE_EQUAL = 0,
CB_COMPARE_LESS_THAN = -1,
};
/**
@brief Compares a BigNumber to an 8 bit integer. You can replicate "a op 58" as "BigNumberCompareToUInt8(a, 58) op 0" replacing "op" with a comparison operator.
@param a The first BigNumber
@returns The result of the comparison as a BigNumberCompare constant. Returns what a is in relation to b.
*/
BigNumberCompare BigNumberCompareTo58(BigNumber * a);
/**
@brief Compares two BigNumber. You can replicate "a op b" as "BigNumberCompare(a, b) op 0" replacing "op" with a comparison operator.
@param a The first BigNumber
@param b The second BigNumber
@returns The result of the comparison as a BigNumberCompare constant. Returns what a is in relation to b.
*/
BigNumberCompare BigNumberCompareToBigInt(BigNumber * a, BigNumber * b);
/**
@brief Calculates the result of an addition of a BigNumber structure by another BigNumber structure and the first BigNumber becomes this new figure. Like "a += b".
@param a A pointer to the BigNumber
@param b A pointer to the second BigNumber
@returns true on success, false on failure.
*/
bool BigNumberEqualsAdditionByBigInt(BigNumber * a, BigNumber * b);
/**
@brief Calculates the result of a division of a BigNumber structure by 58 and the BigNumber becomes this new figure. Like "a /= 58".
@param a A pointer to the BigNumber
@param ans A memory block the same size as the BigNumber data memory block to store temporary data in calculations. Should be set with zeros.
*/
void BigNumberEqualsDivisionBy58(BigNumber * a, uint8_t * ans);
/**
@brief Calculates the result of a multiplication of a BigNumber structure by an 8 bit integer and the BigNumber becomes this new figure. Like "a *= b".
@param a A pointer to the BigNumber
@param b An 8 bit integer
@returns true on success, false on failure
*/
bool BigNumberEqualsMultiplicationByUInt8(BigNumber * a, uint8_t b);
/**
@brief Calculates the result of a subtraction of a BigNumber structure with another BigNumber structure and the BigNumber becomes this new figure. Like "a -= b".
@param a A pointer to a BigNumber
@param b A pointer to a BigNumber
*/
void BigNumberEqualsSubtractionByBigInt(BigNumber * a, BigNumber * b);
/**
@brief Calculates the result of a subtraction of a BigNumber structure by an 8 bit integer and the BigNumber becomes this new figure. Like "a -= b".