-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfidence_ui.py
200 lines (175 loc) · 7.82 KB
/
confidence_ui.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import poseModels
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
import matplotlib.gridspec as grid
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
import cv2
import warnings
import pandas as pd
plt.rcParams.update({'font.size': 10})
# pads both matrices to be the same size, assuming they're both centered and 2-d
def extend_matrices(matrix1, matrix2):
# calculate length, width of m1, m2
dims_m1 = matrix1.shape
dims_m2 = matrix2.shape
h1, w1 = dims_m1[1]/2, dims_m1[0]/2
h2, w2 = dims_m2[1]/2, dims_m2[0]/2
# calculate horizontal/vertical padding for matrices
h_pad1 = max(w2 - w1, 0)
v_pad1 = max(h2 - h1, 0)
h_pad2 = max(w1 - w2, 0)
v_pad2 = max(h1 - h2, 0)
# do the padding
padded_matrix1 = np.pad(matrix1, ((int(np.ceil(h_pad1)), int(np.trunc(h_pad1))),
(int(np.ceil(v_pad1)), int(np.trunc(v_pad1)))), 'constant')
padded_matrix2 = np.pad(matrix2, ((int(np.ceil(h_pad2)), int(np.trunc(h_pad2))),
(int(np.ceil(v_pad2)), int(np.trunc(v_pad2)))), 'constant')
return padded_matrix1, padded_matrix2
def save_frame_result_dual(output_file, image_matrix, dual_heatmaps, dual_confidences, part_names, model_names):
# create plot canvas
fig = plt.figure(figsize=(12, 8))
fig.suptitle("Tracking and Confidence levels in a sample video ({} | {})".format(model_names[0], model_names[1]))
outer_canvas = grid.GridSpec(1, 2)
# plot heatmaps in first grid
left_canvas = grid.GridSpecFromSubplotSpec(4, 2, subplot_spec=outer_canvas[0])
for num, heatmap1 in enumerate(dual_heatmaps[0]):
heatmap2 = dual_heatmaps[1][num]
confidences1 = dual_confidences[0][num]
confidences2 = dual_confidences[1][num]
ax = plt.Subplot(fig, left_canvas[num])
ax.set_title(part_names[num] + " = {0:.2f} | {1:.2f}".format(confidences1, confidences2))
ax.axis('off')
ax.imshow(image_matrix, interpolation='bilinear')
if np.any(heatmap1) and np.any(heatmap2):
ax.imshow(heatmap2, alpha=0.5, cmap='jet', interpolation='bilinear')
else: # warn about no joint detection
warnings.warn("No heatmap found for joint {} in frame {}".format(part_names[num], output_file))
fig.add_subplot(ax)
# plot confidences in second grid (dual)
right_canvas = grid.GridSpecFromSubplotSpec(1, 1, subplot_spec=outer_canvas[1])
ax = plt.Subplot(fig, right_canvas[0])
bar_width = 0.35
opacity = 0.4
n_groups = len(dual_confidences[0])
index = np.arange(n_groups)
# TODO: np.absolute to manage L-R for pose-estimation model, should do better
ax.bar(index - bar_width/2, np.absolute(dual_confidences[0]), bar_width, alpha=opacity,
color='b', label=model_names[0])
ax.bar(index + bar_width/2, np.absolute(dual_confidences[1]), bar_width, alpha=opacity,
color='r', label=model_names[1])
ax.set_ylim((0, 1))
ax.set_xlabel('Body-Part')
ax.set_ylabel('Confidence Value')
ax.set_title('Confidence Values for Each Joint')
ax.set_xticks(index)
ax.set_xticklabels(part_names)
ax.legend()
fig.add_subplot(ax)
plt.savefig(output_file, format='png')
plt.close()
def save_frame_result(output_file, image_matrix, heatmaps, confidences, part_names, model_name, errors=None):
# create plot canvas
fig = plt.figure(figsize=(12, 8))
fig.suptitle("{} Tracking and Confidence levels in a sample video".format(model_name))
outer_canvas = grid.GridSpec(1, 2)
# plot heatmaps in first grid
left_canvas = grid.GridSpecFromSubplotSpec(4, 2, subplot_spec=outer_canvas[0])
for num in range(len(confidences)):
if heatmaps is None:
a_heatmap = None
else:
a_heatmap = heatmaps[num]
ax = plt.Subplot(fig, left_canvas[num])
ax.set_title(part_names[num] + " = {0:.2f}".format(confidences[num]))
ax.axis('off')
ax.imshow(image_matrix, interpolation='bilinear')
if np.any(a_heatmap):
ax.imshow(a_heatmap, alpha=0.5, cmap='jet', interpolation='bilinear')
else: # warn about no joint detection
warnings.warn("No heatmap found for joint {} in frame {} with model {}".format(
part_names[num], output_file, model_name
))
fig.add_subplot(ax)
# plot confidences in second grid
right_canvas = grid.GridSpecFromSubplotSpec(1, 1, subplot_spec=outer_canvas[1])
ax = plt.Subplot(fig, right_canvas[0])
bar_width = 0.35
opacity = 0.4
n_groups = len(confidences)
index = np.arange(n_groups)
ax.bar(index, np.abs(confidences), bar_width, alpha=opacity, color='b', yerr=errors) # TODO: PoseEst more conf
ax.set_ylim((0, 1))
ax.set_xlabel('Body-Part')
ax.set_ylabel('Confidence Value')
ax.set_title('Confidence Values for Each Joint')
ax.set_xticks(index)
ax.set_xticklabels(part_names)
fig.add_subplot(ax)
if output_file is not None:
plt.savefig(output_file, format='png')
plt.close()
return fig
def main(input_video, output_video, nstop=999999, model_name='HumanPose'):
# reset the graph
tf.reset_default_graph()
# create the human pose model
if model_name == 'PoseEst':
model = poseModels.PoseEstimationModel()
else:
model = poseModels.HumanPoseModel()
# container to save confidences
confidences = []
# extract each frame
vidcap = cv2.VideoCapture(input_video)
success, image = vidcap.read()
# for each input/output/confidence trio we'll make a cool image
# we'll show a heatmap overlay on the original frame on left side plus confidence bars on the right side
# video_dimensions = (image.shape[1], image.shape[0])
video_dimensions = (1200, 800)
fps = 240.0
video = cv2.VideoWriter(output_video, cv2.VideoWriter_fourcc(*'MJPG'), fps, video_dimensions)
while success:
# apply model to frame
an_output = model._run_model_once(image)
model.outputs.append(an_output)
# calculate heat-map
a_heatmap_set = model.make_heatmaps_once(an_output)
# calculate confidence set
a_confidence_set = model.calculate_confidence_once(an_output)
confidences.append(a_confidence_set)
this_frame = vidcap.get(0)
if this_frame > nstop:
break
print("saving frame {}".format(this_frame))
# transform fig into rgb
fig = save_frame_result(None, image, a_heatmap_set, a_confidence_set, model.joint_names, model_name)
canvas = FigureCanvas(fig)
canvas.draw()
canvas_str = canvas.tostring_rgb()
frame = np.fromstring(canvas_str, dtype=np.uint8, sep='')
# TODO: video is not saving because it has to be opencv image format
frame = frame.reshape(canvas.get_width_height()[::-1] + (3, ))
# write it in BGR format
video.write(cv2.cvtColor(frame, cv2.COLOR_RGB2BGR))
# go agane
success, image = vidcap.read()
# clean up
print("cleaning up, saving...")
cv2.destroyAllWindows()
video.release()
# save confidences
df = pd.DataFrame(confidences, columns=['1', '2', '3', '4', '5', '6', '7', '8'])
df.to_csv('./confidences.csv')
# make final image
final_image_output = './final_image.png'
confidence_matrix = np.array(confidences)
save_frame_result(final_image_output, image, None, np.nanmean(confidence_matrix, axis=0), model.joint_names,
model_name, errors=np.nanstd(confidence_matrix, axis=0))
if __name__ == '__main__':
# parse arguments input and output video
# input_path = str(sys.argv[1])
# output_path = str(sys.argv[2])
input_path = '/home/harrisonford/Videos/babybrain/000345.MP4'
output_path = './sample.avi'
main(input_path, output_path, nstop=240*1, model_name='PoseEst')