-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsave_snippets.py
49 lines (39 loc) · 1.67 KB
/
save_snippets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
#!/usr/bin/env python3
import math
import pickle
from matplotlib import pyplot as plt
import librosa
import librosa.display
import numpy as np
with open('other_songs.pkl', 'rb') as f:
other_songs = pickle.load(f)
with open('top_of_the_pops.pkl', 'rb') as f:
top_of_the_pops = pickle.load(f)
with open('progressive.pkl', 'rb') as f:
progressive = pickle.load(f)
SNIPPET_LENGTH = 30
MAX_SNIPPETS = 15
MAX_POOLING_SIZE = 5
SR = int(22050/MAX_POOLING_SIZE)
non_progressive_data = []
progressive_data = []
for song in [*top_of_the_pops, *other_songs]:
song = [max(song[i:i + MAX_POOLING_SIZE]) for i in range(0, len(song), MAX_POOLING_SIZE)]
length = len(song)/SR
num_snippets = min(MAX_SNIPPETS, math.ceil(length / SNIPPET_LENGTH))
displacement = (len(song) - (SNIPPET_LENGTH * SR))//(num_snippets - 1)
for i in range(num_snippets):
non_progressive_data.append(song[displacement * i:displacement * i + SNIPPET_LENGTH * SR])
for song in progressive:
song = [max(song[i:i + MAX_POOLING_SIZE]) for i in range(0, len(song), MAX_POOLING_SIZE)]
length = len(song)/SR
num_snippets = min(MAX_SNIPPETS, math.ceil(length / SNIPPET_LENGTH))
displacement = (len(song) - (SNIPPET_LENGTH * SR))//(num_snippets - 1)
for i in range(num_snippets):
progressive_data.append(song[displacement * i:displacement * i + SNIPPET_LENGTH * SR])
non_progressive_data = np.array(non_progressive_data)
progressive_data = np.array(progressive_data)
print(non_progressive_data.shape)
print(progressive_data.shape)
np.save('non_progressive_data.npy', non_progressive_data)
np.save('progressive_data.npy', progressive_data)