-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathSciKitLearnClassifiers.py
217 lines (179 loc) · 7.04 KB
/
SciKitLearnClassifiers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
#!/usr/bin/env python3
# coding: utf-8
import numpy as np
import matplotlib.pyplot as plt
import scipy.linalg as la
import tensorflow as tf
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.metrics import plot_confusion_matrix
from sklearn.preprocessing import OneHotEncoder
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import confusion_matrix
from sklearn import tree
from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import make_classification
from sklearn import svm
from sklearn.base import BaseEstimator
from sklearn import tree
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.metrics import accuracy_score
from keras.models import Sequential
from keras.layers.core import Dense, Activation
from keras.callbacks import EarlyStopping
from keras.callbacks import ModelCheckpoint
import seaborn as sns
def scaleData(data):
sc = StandardScaler()
return sc.fit_transform(data)
def convert1dto2d(data):
ohe = OneHotEncoder()
return ohe.fit_transform(data.reshape(-1,1)).toarray()
def convert2dto1d(data):
return np.argmax(data, axis = 1)
def plotCM(conMatrix,title=None):
figure = plt.figure(figsize = (8,8))
sns.heatmap(conMatrix, annot=True,cmap=plt.cm.Blues)
plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label')
plt.title(title)
plt.show()
plt.close(figure)
class Classifier:
def __init__(self):
pass
class NeuralNetwork(Classifier):
msSum = 0.0
def __init__(self):
self.model = Sequential()
self.model.add(Dense(120000, input_dim=120000, activation='tanh'))
self.model.add(Dense(2, activation='softmax'))
self.model.compile(loss='categorical_crossentropy')
def fit(self,X,y):
return self.model.fit(X, convert1dto2d(y), epochs=200, batch_size=5)
def predict(self, X):
return self.model.predict(X)
def getCM(self, X, y):
y_pred = self.model.predict_classes(X)
return tf.math.confusion_matrix(labels = y, predictions = y_pred).numpy()
def plot(self, X, y):
cm = self.getCM(X,y)
plotCM(cm,title='Neural Network Split(' + str(currentSplit) + ')')
def tabulate(self,X,y):
y_pred = self.predict(X)
NeuralNetwork.msSum += accuracy_score(y,convert2dto1d(y_pred))
#def fit(self,X,y,Xt,yt):
# return self.model.fit(X, y, epochs=1000, batch_size=5, validation_data=(Xt,yt))
class FisherDiscrim(Classifier):
msSum = 0.0
def __init__(self):
self.clf = LinearDiscriminantAnalysis()
def fit(self,X,y):
self.clf.fit(X,y)
def plot(self,X,y):
plot_confusion_matrix(self.clf, X, y).ax_.set_title('Fisher Discriminant Split(' + str(currentSplit) + ')')
def tabulate(self,X,y):
y_pred = self.clf.predict(X)
FisherDiscrim.msSum += accuracy_score(y,y_pred)
class RandomForests(Classifier):
msSum = 0.0
def __init__(self):
self.clf = RandomForestClassifier()
def fit(self,X,y):
return self.clf.fit(X,y)
def plot(self,X,y):
plot_confusion_matrix(self.clf, X, y).ax_.set_title('Random Forests Split(' + str(currentSplit) + ')')
def tabulate(self,X,y):
y_pred = self.clf.predict(X)
RandomForests.msSum += accuracy_score(y,y_pred)
class LinearSVM(Classifier):
msSum = 0.0
def __init__(self):
self.clf = svm.SVC()
def fit(self,X,y):
return self.clf.fit(X,y)
def plot(self,X,y):
plot_confusion_matrix(self.clf, X, y).ax_.set_title('Linear SVM Split(' + str(currentSplit) + ')')
#def test(self,X,y)
def tabulate(self,X,y):
y_pred = self.clf.predict(X)
LinearSVM.msSum += accuracy_score(y,y_pred)
class RegressionTree(Classifier):
msSum = 0.0
def __init__(self):
self.clf = tree.DecisionTreeClassifier()
def fit(self,X,y):
return self.clf.fit(X,y)
def plot(self,X,y):
plot_confusion_matrix(self.clf, X, y).ax_.set_title('Regression Tree Split(' + str(currentSplit) + ')')
def tabulate(self,X,y):
y_pred = self.clf.predict(X)
RegressionTree.msSum += accuracy_score(y,y_pred)
def getData():
#load extracted data from files
folder = "ExtractDataset"
images = np.load(folder+'/LogImages.npy') #Rade the trianing data.
images = images.reshape(254,120000)
#print(images.shape)
#images = np.moveaxis(images, -1, 1) #Reshape channeL from [B, H, W, C] to [B, C, H, W]
#print(images.shape)
labels = np.load(folder+'/Labels.npy') #Rade the trianing data.
#print(labels.shape)
#labels = labels.reshape(labels.shape[0],1)
#print(labels.shape)
#print(labels.shape)
'''
labels2D = np.zeros((labels.shape[0],2))
for i in range(len(labels)):
lab = labels[i]
if lab == 0:
labels2D[i,0] = 1
if lab == 1:
labels2D[i,1] = 1
lengths = [round(len(images)*0.8), round(len(images)*0.2)]
#print(lengths)
'''
##perform training/testing data splits
#trainImg, testImg = random_split(images, lengths ,generator=torch.random.manual_seed(42)) #Shuffle data with random seed 42 before split train and test
#trainLab, testLab = random_split(labels, lengths ,generator=torch.random.manual_seed(42)) #Shuffle data with random seed 42 before split train and test
#print(images.shape)
#print(labels.shape)
#print(trainImg[0].shape)
#print(trainLab[25])
return images, labels
def main():
#load dataset
images, labels = getData()
#scale data by removing mean and scaling to unit variance
X = images
#X = scaleData(images)
#get classification labels
y = labels
#create list of classifiers to use
Classifiers = [FisherDiscrim, RandomForests, LinearSVM, RegressionTree]
#perform on 10 different splits
for i in range(10):
#perform split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
#set global var for plot's split identification in plot title
global currentSplit
currentSplit = i + 1
#run split on each classifier
for cl in Classifiers:
#instantate
classifier = cl()
#fit
classifier.fit(X_train,y_train)
#plot confusion matrix for test data
classifier.plot(X_test, y_test)
#tabulate misclassification errors using accuracy
classifier.tabulate(X_test,y_test)
print()
print("Average Accuracy of Different Classifiers")
for cl in Classifiers:
avg = cl.msSum / 10
print(cl.__name__ + ": " + str(avg))
if __name__ == "__main__":
#run main script
main()