-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathExtractFeatures.py
234 lines (198 loc) · 8.48 KB
/
ExtractFeatures.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
#!/usr/bin/env python3
# coding: utf-8
#documentation page for librosa module
#https://librosa.org/doc/main/auto_examples/plot_display.html
import librosa, audioread
import librosa.display
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import os, cv2, warnings
from pydub import AudioSegment
#functioncall for creating output directory if missing
def createDirIfMissing(dir):
if not os.path.isdir(dir):
os.makedirs(dir)
#these folders must be created before running script
folders=['Progressive_Rock_Songs','Not_Progressive_Rock/Other_Songs','Not_Progressive_Rock/Top_Of_The_Pops']
saveFolders = ['ExtractDataset/prog/', 'ExtractDataset/nonprog/']
#check for existence of output save folders
for folder in saveFolders:
createDirIfMissing(folder)
#1 for prog; 0 for nonprog
database = {'idx':[],'ReName':[],'Style':[],'Label':[],'StartDur (Sec)':[],'EndDur (Sec)':[],'Duration (Sec)':[]
,'OriName':[], 'DbMax':[],'DbMin':[]}
saveArr = []
saveImgArr = []
saveImgArrLog=[]
labels = []
chroma_stft = []
chroma_cqt = []
chroma_cens = []
melspectogram = []
mfcc = []
rms = []
spectral_centroid = []
spectral_bandwidth = []
spectral_contrast = []
spectral_flatness = []
spectral_rolloff = []
poly_features = []
tonnetz = []
zero_crossing_rate = []
tempogram = []
fourier_tempogram = []
filesName = []
for folder in folders:
if folder == 'Progressive_Rock_Songs':
saveFolder = saveFolders[0]
reName = 'Prog-'
style = 'Prog'
idx = 0
label = 1
if folder == 'Not_Progressive_Rock/Other_Songs':
saveFolder = saveFolders[1]
reName = 'NonProgOther-'
style = 'NonProg'
idx = 0
label = 0
if folder == 'Not_Progressive_Rock/Top_Of_The_Pops':
reName = 'NonProgTopPops-'
label = 0
filesNames = os.listdir('./Dataset/'+folder)
for i in range(len(filesNames)):
fileName = filesNames[i]
print(i)
print(fileName)
audio_path = './Dataset/'+folder+'/'+fileName
formalName = fileName.split('.')[-1]
FilExt = fileName.split('.')[-1]
if FilExt != 'mp3':
flac_audio = AudioSegment.from_file('./Dataset/'+folder+'/'+fileName, FilExt)
fileName = fileName.replace(fileName.split('.')[-1],'')+'mp3'
audio_path = './FlatToMP3/'+folder+'/'+fileName
createDirIfMissing('./FlatToMP3/'+folder)
flac_audio.export(audio_path, format="mp3")
print(fileName)
saveName = reName+str(idx)
totalDur = audioread.audio_open(audio_path).duration
plt.cla()
plt.clf()
plt.close('all')
plt.figure(1, figsize=(14, 5))
#load file in librosa
x , sr = librosa.load(audio_path, sr=22050, offset=totalDur/2-30, duration=60.0)
#display Spectrogram
X = librosa.stft(x, hop_length=256, n_fft=4096)
Xdb = librosa.amplitude_to_db(abs(X), ref=np.max)
#get features
feature1 = librosa.feature.chroma_stft(x,sr)
feature2 = librosa.feature.chroma_cqt(x,sr)
feature3 = librosa.feature.chroma_cens(x,sr)
feature4 = librosa.feature.melspectrogram(x,sr)
feature5 = librosa.feature.mfcc(x,sr)
feature6 = librosa.feature.rms(x,sr)
feature7 = librosa.feature.spectral_centroid(x,sr)
feature8 = librosa.feature.spectral_bandwidth(x,sr)
feature9 = librosa.feature.spectral_contrast(x,sr)
feature10 = librosa.feature.spectral_flatness(x)
feature11 = librosa.feature.spectral_rolloff(x,sr)
feature12 = librosa.feature.poly_features(x,sr)
feature13 = librosa.feature.tonnetz(x,sr)
feature14 = librosa.feature.zero_crossing_rate(x)
feature15 = librosa.feature.tempogram(x,sr)
feature16 = librosa.feature.fourier_tempogram(x,sr)
print(Xdb.shape)
if Xdb.shape[1] != 5168:
continue
#librosa.display.specshow(Xdb, hop_length=256, sr=sr, x_axis='time', y_axis='hz', cmap='gray_r') #, vmin=-50, vmax=50,
librosa.display.specshow(Xdb, hop_length=256, sr=sr, x_axis='time', y_axis='hz') #, vmin=-50, vmax=50,
cb=plt.colorbar(format="%+2.f dB")
plt.savefig(saveFolder+saveName+'-withAix.png')
plt.axis('off')
cb.remove()
plt.draw() #update plot
plt.savefig(saveFolder+saveName+'.png')
#plt.show()
###Resize each img size into 200x200 for CNN training
readImg1 = cv2.imread(saveFolder+saveName+'.png')
resizeImg1 = cv2.resize(readImg1,(200,200))
cv2.imwrite(saveFolder+saveName+'-Resize.png', resizeImg1)
#########################################################
###Log img###############################################
plt.cla()
plt.clf()
plt.close('all')
plt.figure(2, figsize=(14, 5))
librosa.display.specshow(Xdb, hop_length=256, sr=sr, x_axis='time', y_axis='log') #, vmin=-50, vmax=50,
cb=plt.colorbar(format="%+2.f dB")
plt.savefig(saveFolder+saveName+'-LogwithAix.png')
plt.axis('off')
cb.remove()
plt.draw() #update plot
plt.savefig(saveFolder+saveName+'-Log.png')
#plt.show()
###Resize each img size into 200x200 for CNN training
readImg2 = cv2.imread(saveFolder+saveName+'-Log.png')
resizeImg2 = cv2.resize(readImg2,(200,200))
cv2.imwrite(saveFolder+saveName+'-LogResize.png', resizeImg2)
##############################################################
##############################################################
saveArr.append(Xdb)
labels.append(label)
filesName.append(fileName)
saveImgArr.append(resizeImg1)
saveImgArrLog.append(resizeImg2)
#add to feature arrays
chroma_stft.append(feature1)
chroma_cqt.append(feature2)
chroma_cens.append(feature3)
melspectogram.append(feature4)
mfcc.append(feature5)
rms.append(feature6)
spectral_centroid.append(feature7)
spectral_bandwidth.append(feature8)
spectral_contrast.append(feature9)
spectral_flatness.append(feature10)
spectral_rolloff.append(feature11)
poly_features.append(feature12)
tonnetz.append(feature13)
zero_crossing_rate.append(feature14)
tempogram.append(feature15)
fourier_tempogram.append(feature16)
database['idx'].append(idx)
database['ReName'].append(saveName)
database['OriName'].append(fileName)
database['Style'].append(style)
database['Label'].append(label)
database['StartDur (Sec)'].append(totalDur/2-30)
database['EndDur (Sec)'].append(totalDur/2-30+60)
database['Duration (Sec)'].append(totalDur)
database['DbMax'].append(Xdb.max())
database['DbMin'].append(Xdb.min())
idx+=1
#break
np.save('./ExtractDataset/DBHzarray.npy', saveArr)
np.save('./ExtractDataset/Imgages.npy', saveImgArr)
np.save('./ExtractDataset/LogImages.npy', saveImgArrLog)
np.save('./ExtractDataset/Labels.npy', labels)
np.save('./ExtractDataset/FilesName.npy', filesName)
createDirIfMissing('./ExtractDataset/Features/')
np.save('./ExtractDataset/Features/chroma_stft.npy',chroma_stft)
np.save('./ExtractDataset/Features/chroma_cqt.npy',chroma_cqt)
np.save('./ExtractDataset/Features/chroma_cens.npy',chroma_cens)
np.save('./ExtractDataset/Features/melspectogram.npy',melspectogram)
np.save('./ExtractDataset/Features/mfcc.npy',mfcc)
np.save('./ExtractDataset/Features/rms.npy',rms)
np.save('./ExtractDataset/Features/spectral_centroid.npy',spectral_centroid)
np.save('./ExtractDataset/Features/spectral_bandwidth.npy',spectral_bandwidth)
np.save('./ExtractDataset/Features/spectral_contrast.npy',spectral_contrast)
np.save('./ExtractDataset/Features/spectral_flatness.npy',spectral_flatness)
np.save('./ExtractDataset/Features/spectral_rolloff.npy',spectral_rolloff)
np.save('./ExtractDataset/Features/poly_features.npy',poly_features)
np.save('./ExtractDataset/Features/tonnetz.npy',tonnetz)
np.save('./ExtractDataset/Features/zero_crossing_rate.npy',zero_crossing_rate)
np.save('./ExtractDataset/Features/tempogram.npy',tempogram)
np.save('./ExtractDataset/Features/fourier_tempogram.npy',fourier_tempogram)
DatabaseToPd = pd.DataFrame(data=database)
DatabaseToPd.to_excel('Database.xlsx', index=True)