generated from hankyang94/OptimalControlEstimation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
index.Rmd
253 lines (211 loc) · 8.4 KB
/
index.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
---
title: "Semidefinite Optimization and Relaxation"
author: "Heng Yang"
date: "`r Sys.Date()`"
site: bookdown::bookdown_site
output: bookdown::gitbook
documentclass: book
bibliography: [book.bib]
biblio-style: apalike
link-citations: yes
github-repo: hankyang94/Semidefinite
description: "Lecture notes for Harvard ES 257 Semidefinite Optimization and Relaxation."
---
\newcommand{\calG}{\mathcal{G}}
\newcommand{\calC}{\mathcal{C}}
\newcommand{\calV}{\mathcal{V}}
\newcommand{\calE}{\mathcal{E}}
\newcommand{\calF}{\mathcal{F}}
\newcommand{\calP}{\mathcal{P}}
\newcommand{\calQ}{\mathcal{Q}}
\newcommand{\calA}{\mathcal{A}}
\newcommand{\calL}{\mathcal{L}}
\newcommand{\calB}{\mathcal{B}}
\newcommand{\calK}{\mathcal{K}}
\newcommand{\calS}{\mathcal{S}}
\newcommand{\calM}{\mathcal{M}}
\newcommand{\calI}{\mathcal{I}}
\newcommand{\calR}{\mathcal{R}}
\newcommand{\calZ}{\mathcal{Z}}
\newcommand{\mathx}{\mathrm{x}}
\newcommand{\mathy}{\mathrm{y}}
\newcommand{\bbE}{\mathbb{E}}
\newcommand{\calN}{\mathcal{N}}
\newcommand{\tldR}{\tilde{R}}
\newcommand{\bbZ}{\mathbb{Z}}
\newcommand{\bbQ}{\mathbb{Q}}
\newcommand{\bbC}{\mathbb{C}}
\newcommand{\bbF}{\mathbb{F}}
\newcommand{\bbR}{\mathbb{R}}
\newcommand{\Real}[1]{\mathbb{R}^{#1}}
\newcommand{\Comp}[1]{\mathbb{C}^{#1}}
\newcommand{\sym}[1]{\mathbb{S}^{#1}}
\newcommand{\psd}[1]{\sym{#1}_{+}}
\newcommand{\pd}[1]{\sym{#1}_{++}}
\newcommand{\inprod}[2]{\langle #1, #2 \rangle}
\newcommand{\linprod}[2]{\left\langle #1, #2 \right\rangle}
\newcommand{\trace}{\mathrm{tr}}
\newcommand{\tran}{^\top}
<!-- \newcommand{\det}{\mathrm{det}} -->
\newcommand{\rank}{\mathrm{rank}}
\newcommand{\diag}{\mathrm{diag}}
\newcommand{\Diag}{\mathrm{Diag}}
\newcommand{\BlkDiag}{\mathrm{BlkDiag}}
\newcommand{\vectorize}{\mathrm{vec}}
\newcommand{\svec}{\mathrm{svec}}
\newcommand{\mat}{\mathrm{mat}}
\newcommand{\smat}{\mathrm{smat}}
\newcommand{\norm}[1]{\Vert #1 \Vert}
\newcommand{\lnorm}[1]{\left\Vert #1 \right\Vert}
\newcommand{\pnorm}[2]{\Vert #1 \Vert_{#2}}
\newcommand{\Fnorm}[1]{\Vert #1 \Vert_\mathrm{F}}
\newcommand{\conv}{\mathrm{conv}}
\newcommand{\cone}{\mathrm{cone}}
\newcommand{\interior}{\mathrm{int}}
\newcommand{\relint}{\mathrm{ri}}
\newcommand{\poly}[1]{\mathbb{R}[#1]}
\newcommand{\SOd}{\mathrm{SO}(d)}
\newcommand{\SOthree}{\mathrm{SO}(3)}
\newcommand{\Od}{\mathrm{O}(d)}
\newcommand{\Ogroup}{\mathrm{O}}
\newcommand{\usphere}{\mathcal{S}}
\newcommand{\bmath}[1]{\boldsymbol{#1}}
\newcommand{\lbrkt}{[\![}
\newcommand{\rbrkt}{]\!]}
\newcommand{\brkt}[1]{\lbrkt #1 \rbrkt}
\newcommand{\bracket}[1]{[ #1 ]}
\newcommand{\sign}{\mathrm{sgn}}
<!-- \newcommand{\paren}[1]{(#1)}
\renewcommand{\lparen}[1]{\left( #1 \right)} -->
\newcommand{\cbrace}[1]{\{ #1 \}}
\newcommand{\lcbrace}[1]{ \left\{ #1 \right\} }
\newcommand{\aff}{\mathrm{aff}}
\newcommand{\bbN}{\mathbb{N}}
\newcommand{\dist}{\mathrm{dist}}
\newcommand{\subject}{\mathrm{s.t.}}
\newcommand{\cl}{\mathrm{cl}}
\newcommand{\eye}{\mathrm{I}}
\newcommand{\inv}{^{-1}}
\newcommand{\invtran}{^{-\top}}
\newcommand{\Range}{\mathrm{Range}}
\renewcommand{\ker}{\mathrm{ker}}
\newcommand{\face}{\mathrm{face}}
\newcommand{\lmid}{\ \middle\vert\ }
\renewcommand{\Re}{\mathrm{Re}}
\newcommand{\hatmap}[1]{[#1]_{\times}}
\newcommand{\kron}{\otimes}
\newcommand{\skron}{\kron_{\mathrm{s}}}
\newcommand{\Ideal}{\mathrm{Ideal}}
\newcommand{\lexsucc}{\succ_{\mathrm{lex}}}
\newcommand{\lexprec}{\prec_{\mathrm{lex}}}
\newcommand{\grlexsucc}{\succ_{\mathrm{grlex}}}
\newcommand{\grlexprec}{\prec_{\mathrm{grlex}}}
\newcommand{\grevlexsucc}{\succ_{\mathrm{grevlex}}}
\newcommand{\grevlexprec}{\prec_{\mathrm{grevlex}}}
\newcommand{\abs}[1]{|#1|}
\newcommand{\initial}[1]{\mathrm{in}(#1)}
\newcommand{\NormalForm}{\mathrm{NormalForm}}
\newcommand{\ceil}[1]{\lceil #1 \rceil}
\newcommand{\floor}[1]{\lfloor #1 \rfloor}
<!-- \newcommand{\lceil}[1]{\left\lceil #1 \right\rceil} -->
\newcommand{\qmodule}{\mathrm{Qmodule}}
\newcommand{\mom}{\mathrm{mom}}
\newcommand{\loc}{\mathrm{loc}}
\newcommand{\preorder}{\mathrm{Preorder}}
\newcommand{\supp}{\mathrm{supp}}
\newcommand{\New}{\mathrm{New}}
\newcommand{\myspan}{\mathrm{span}}
<!-- \newcommand{\deg}{\mathrm{deg}} -->
# Preface {-}
This is the textbook for Harvard ENG-SCI 257: Semidefinite Optimization and Relaxation.
## Feedback {-}
I would like to invite you to provide comments to the textbook via the following two ways:
- Inline comments with Hypothesis:
- Go to [Hypothesis](https://hypothes.is) and create an account
- Install the [Chrome extension of Hypothesis](https://chrome.google.com/webstore/detail/hypothesis-web-pdf-annota/bjfhmglciegochdpefhhlphglcehbmek)
- Provide public comments to textbook contents and I will try to address them
- Blog-style comments with Disqus:
- At the end of each Chapter, there is a Disqus module where you can leave feedback
I would recommend using Disqus for high-level and general feedback regarding the entire Chapter, but using Hypothesis for feedback and questions about the technical details.
## Offerings {-}
Information about the offerings of the class is listed below.
#### 2024 Spring {-}
**Time**: Mon/Wed 2:15 - 3:30pm
**Location**: Science and Engineering Complex, 1.413
**Instructor**: [Heng Yang](https://hankyang.seas.harvard.edu/)
**Teaching Fellow**: [Safwan Hossain](https://safwanhossain.github.io/)
[**Syllabus**](https://docs.google.com/document/d/1H6Wqht_PVw_n8Jl0kXN3HjZfHkeZJYqYWT4ayxvqRlU/edit?usp=sharing)
<!-- #### Acknowledgment {-} -->
# Notation {-}
We will use the following standard notation throughout this book.
**Basics**
| | |
| :---------------- | :------ |
| $\Real{}$ | real numbers |
| $\Real{}_{+}$ | nonnegative real |
| $\Real{}_{++}$| positive real |
| $\mathbb{Z}$ | integers |
| $\bbN$ | nonnegative integers |
| $\bbN_{+}$ | positive integers |
| $\Real{n}$ | $n$-D column vector |
| $\Real{n}_{+}$| nonnegative orthant |
| $\Real{n}_{++}$| positive orthant |
| $e_i$ | standard basic vector |
| $\Delta_n := \{x \in \mathbb{R}^n_{+} \mid \sum x_i = 1 \}$ | standard simplex |
**Matrices**
| | |
| :---------------- | :------ |
| $\mathbb{R}^{m \times n}$ | $m \times n$ real matrices |
| $\sym{n}$ | $n\times n$ symmetric matrices |
| $\psd{n}$ | $n\times n$ positive semidefinite matrices |
| $\pd{n}$ | $n\times n$ positive definite matrices |
| $\inprod{A}{B}$ or $\bullet$ | inner product in $\Real{m \times n}$ |
| $\trace(A)$| trace of $A \in \Real{n \times n}$ |
| $A\tran$ | matrix transpose |
| $\det(A)$ | matrix determinant |
| $\rank(A)$ | rank of a matrix |
| $\diag(A)$ | diagonal of a matrix $A$ as a vector |
| $\Diag(a)$ | turning a vector into a diagonal matrix |
| $\BlkDiag(A,B,\dots)$ | block diagonal matrix with blocks $A,B,\dots$ |
| $\succeq 0$ and $\preceq 0$ | positive / negative semidefinite |
| $\succ 0$ and $\prec 0$ | positive / negative definite |
| $\lambda_{\max}$ and $\lambda_{\min}$ | maximum / minimum eigenvalue |
| $\sigma_{\max}$ and $\sigma_{\min}$ | maximum / minimum singular value |
| $\vectorize(A)$ | vectorization of $A \in \Real{m \times n}$
| $\svec(A)$| symmetric vectorization of $A \in \sym{n}$
| $\Fnorm{A}$ | Frobenius norm |
| $\Range(A)$ | span of the column vectors |
| $\ker(A)$ | right null space |
**Geometry**
| | |
| :---------------- | :------ |
| $\pnorm{a}{p}$ | $p$-norm |
| $\norm{a}$ | $2$-norm |
| $B(o,r)$ | ball with center $o$ and radius $r$ |
| $\aff (S)$ | affine hull of set $S$ |
| $\conv(S)$ | convex hull of set $S$ |
| $\cone(S)$ | conical hull of set $S$ |
| $\interior(S)$ | interior of set $S$ |
| $\relint(S)$ | relative interior of set $S$ |
| $\partial S$ | boundary of set $S$ |
| $P^\circ$ | polar of convex body |
| $P^{*}$ | dual of set $P$ |
| $\Od$ | orthogonal group of dimension $d$ |
| $\SOd$ | special orthogonal group of dimension $d$ |
| $\usphere^{d-1}$ | unit sphere in $\Real{d}$ |
**Optimization**
| | |
| :---------------- | :------ |
| KKT | Karush–Kuhn–Tucker |
| LP | linear program |
| QP | quadratic program |
| SOCP | second-order cone program |
| SDP | semidefinite program |
**Algebra**
| | |
| :---------------- | :------ |
| $\poly{x}$ | polynomial ring in $x$ with real coefficients |
| $\deg$ | degree of a monomial / polynomial |
| $\poly{x}_d$ | polynomials in $x$ of degree up to $d$ |
| $[x]_d$ | vector of monomials of degree up to $d$ |
| $\brkt{x}_d$ | vector of monomials of degree $d$ |