-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathops.py
58 lines (51 loc) · 2.22 KB
/
ops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
from tensorflow.contrib.layers.python.layers import batch_norm
import numpy as np
#from tensorflow.python.layers import batch_norm
def batch_normal(input , scope="scope" , reuse=False):
return batch_norm(input , epsilon=1e-5, decay=0.9 , scale=True, scope=scope , reuse=reuse , updates_collections=None)
def print_similarity(pred, target_label_dict):
similar_list = []
for target in target_label_dict:
G_res_index = np.argmax(pred[target, :])
G_one = pred[:, G_res_index]
real_y = target_label_dict[target]
G_similar = np.sum(real_y * G_one)
G_similar = G_similar / np.sum(real_y)
# print(f"the target:{target}. The similarity is {G_similar}")
if target % 1000 == 0:
print("the target:%d. The similarity is %f" % (target, G_similar))
print("The target values are:")
print(pred[target, :])
similar_list.append(G_similar)
print("check mean similar values")
print(np.mean(similar_list))
def print_mu(target_list, pred_dis_res,n_clusters):
out_list = []
for targets in target_list:
target_pred = pred_dis_res[targets]
max_index = np.argmax(target_pred, axis=1)
out_list.append(((len(np.unique(max_index)) - 1) / (np.max([n_clusters-1, 1]) * (np.max(np.bincount(max_index))))))
print("The mu_1 is:%f"%(np.mean(out_list)))
return np.mean(out_list)
def print_mu2(target_list, pred_dis_res, n_clusters):
out_list = []
truth_list = [[] for x in range(n_clusters)]
overall_n = 0
for targets in target_list:
for target in targets:
target_pred = pred_dis_res[target]
max_index = np.argmax(target_pred)
truth_list[max_index].append(target)
overall_n += 1
for targets in target_list:
target_pred = pred_dis_res[targets]
max_indexes = np.argmax(target_pred, axis = 1)
max_indexes = np.unique(max_indexes)
group_len = 0
for idx in max_indexes:
group_len += len(truth_list[idx])
group_len -= len(targets)
const_denom = np.max([overall_n - len(targets), 1])
out_list.append(group_len / const_denom)
print("The mu2 is %f" %(np.mean(out_list)))
return np.mean(out_list)