-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils_mvgrl.py
78 lines (64 loc) · 2.66 KB
/
utils_mvgrl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import numpy as np
import networkx as nx
from scipy.linalg import fractional_matrix_power, inv
import scipy.sparse as sp
def compute_ppr(graph: nx.Graph, alpha=0.2, self_loop=True):
a = nx.convert_matrix.to_numpy_array(graph)
if self_loop:
a = a + np.eye(a.shape[0]) # A^ = A + I_n
d = np.diag(np.sum(a, 1)) # D^ = Sigma A^_ii
dinv = fractional_matrix_power(d, -0.5) # D^(-1/2)
at = np.matmul(np.matmul(dinv, a), dinv) # A~ = D^(-1/2) x A^ x D^(-1/2)
return alpha * inv((np.eye(a.shape[0]) - (1 - alpha) * at)) # a(I_n-(1-a)A~)^-1
def compute_heat(graph: nx.Graph, t=5, self_loop=True):
a = nx.convert_matrix.to_numpy_array(graph)
if self_loop:
a = a + np.eye(a.shape[0])
d = np.diag(np.sum(a, 1))
return np.exp(t * (np.matmul(a, inv(d)) - 1))
def sparse_to_tuple(sparse_mx):
"""Convert sparse matrix to tuple representation."""
def to_tuple(mx):
if not sp.isspmatrix_coo(mx):
mx = mx.tocoo()
coords = np.vstack((mx.row, mx.col)).transpose()
values = mx.data
shape = mx.shape
return coords, values, shape
if isinstance(sparse_mx, list):
for i in range(len(sparse_mx)):
sparse_mx[i] = to_tuple(sparse_mx[i])
else:
sparse_mx = to_tuple(sparse_mx)
return sparse_mx
def preprocess_features(features):
"""Row-normalize feature matrix and convert to tuple representation"""
rowsum = np.array(features.sum(1))
r_inv = np.power(rowsum, -1).flatten()
r_inv[np.isinf(r_inv)] = 0.
r_mat_inv = sp.diags(r_inv)
features = r_mat_inv.dot(features)
if isinstance(features, np.ndarray):
return features
else:
return features.todense(), sparse_to_tuple(features)
def normalize_adj(adj, self_loop=True):
"""Symmetrically normalize adjacency matrix."""
if self_loop:
adj = adj + sp.eye(adj.shape[0])
adj = sp.coo_matrix(adj)
rowsum = np.array(adj.sum(1))
d_inv_sqrt = np.power(rowsum, -0.5).flatten()
d_inv_sqrt[np.isinf(d_inv_sqrt)] = 0.
d_mat_inv_sqrt = sp.diags(d_inv_sqrt)
return adj.dot(d_mat_inv_sqrt).transpose().dot(d_mat_inv_sqrt).tocoo()
'''
def sparse_mx_to_torch_sparse_tensor(sparse_mx):
"""Convert a scipy sparse matrix to a torch sparse tensor."""
sparse_mx = sparse_mx.tocoo().astype(np.float32)
indices = torch.from_numpy(
np.vstack((sparse_mx.row, sparse_mx.col)).astype(np.int64))
values = torch.from_numpy(sparse_mx.data)
shape = torch.Size(sparse_mx.shape)
return torch.sparse.FloatTensor(indices, values, shape)
'''