-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmask_gvae.py
266 lines (243 loc) · 14.3 KB
/
mask_gvae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import numpy as np
import scipy
import optimizer
import tensorflow as tf
from layers import GraphConvolution, GraphConvolutionSparse,InnerProductDecoder, FullyConnect, Graphite, \
GraphiteSparse,Scale,Dense,GraphiteSparse_simple, Graphite_simple,GraphConvolutionSparse_denseadj, GraphConvolution_denseadj
from ops import batch_normal
from sklearn.metrics import roc_auc_score
from sklearn.metrics import average_precision_score
from optimizer import Optimizer
flags = tf.app.flags
FLAGS = flags.FLAGS
class mask_gvae(object):
def __init__(self,placeholders, num_features,num_nodes, features_nonzero,
learning_rate_init ,if_drop_edge = True, **kwargs):
allowed_kwargs = {'name', 'logging', 'indexes_add', 'adj_clean', 'k'}
for kwarg in kwargs.keys():
assert kwarg in allowed_kwargs, 'Invalid keyword argument: ' + kwarg
for kwarg in kwargs.keys():
assert kwarg in allowed_kwargs, 'Invalid keyword argument: ' + kwarg
name = kwargs.get('name')
if not name:
name = self.__class__.__name__.lower()
self.name = name
logging = kwargs.get('logging', False)
self.logging = logging
self.input_dim = num_features
self.inputs = placeholders['features']
self.adj = placeholders['adj']
self.dropout = placeholders['dropout']
self.adj_ori = placeholders['adj_orig']
self.features_nonzero = features_nonzero
self.batch_size = FLAGS.batch_size
self.latent_dim = FLAGS.latent_dim
self.n_samples = num_nodes # this is the number of nodes in the nodes
self.n_clusters = FLAGS.n_clusters
self.zp = tf.random_normal(shape=[self.n_samples, self.latent_dim])
self.learning_rate_init = learning_rate_init
self.if_drop_edge = if_drop_edge
#######################################
self.test_mask_adj = tf.one_hot(5, self.n_samples * self.n_samples,
on_value = True,
off_value = False,dtype = tf.bool)
self.test_mask_feature = tf.one_hot(10, self.n_samples * self.input_dim,
on_value = True,
off_value = False,dtype= tf.bool)
self.indexes_add_orig = placeholders['noised_mask']
self.adj_clean = kwargs["adj_clean"]
self.noised_num = placeholders["noised_num"]
self.clean_indexes = placeholders["clean_mask"]
self.placeholders = placeholders
self.k = kwargs["k"]
#######################################
return
def build_model(self):
#### this is the first thing we have
self.adj_dense = tf.sparse_tensor_to_dense(self.adj, default_value=0, validate_indices=False, name=None) # normalize adj
self.realD_tilde = self.discriminate_mock_detect(self.inputs, self.adj_dense,
reuse=False)
self.realD_tilde = self.realD_tilde * self.placeholders['node_mask']
#######################
# build the model
self.z_x = self.encoder(self.inputs) # incoder
self.x_tilde = 0
self.new_adj_outlist = []
self.new_features_list = []
self.reward_percent_list = []
self.percentage_list_all = []
self.percentage_fea = []
self.new_adj_output = self.adj_dense
self.adj_ori_dense = tf.sparse_tensor_to_dense(self.adj_ori, default_value=0, validate_indices=False, name=None) #A + I
self.adj_clean_dense = tf.sparse_tensor_to_dense(self.adj_clean, default_value = 0, validate_indices = False) ## no noise one
self.x_tilde = self.generate_dense(self.z_x, self.z_x.shape[1], self.input_dim)
self.x_tilde_output_ori = self.x_tilde
if self.if_drop_edge != False:
#######
######### prepare the graph for delete k edges
ones = tf.ones_like(self.x_tilde, dtype=tf.float32)
self.zeros = tf.zeros_like(self.x_tilde, dtype = tf.bool)
self.feature_dense = tf.sparse_tensor_to_dense(self.inputs)
self.ones_feature = tf.ones_like(self.feature_dense)
max_value = tf.reduce_max(self.x_tilde)
lower_bool_label = tf.linalg.band_part(self.adj_ori_dense, -1, 0)
upper_ori_label = self.adj_ori_dense - lower_bool_label # there is no diagnal
upper_bool_label = tf.cast(upper_ori_label, tf.bool)
new_adj_for_del = tf.where(upper_bool_label, x=self.x_tilde, y=ones * max_value, name="delete_mask")
self.new_adj_for_del_test = max_value - new_adj_for_del
new_adj_for_del = max_value - new_adj_for_del # by this we put the no edge value to 0 and put the minimum value to the larges
ori_adj_diag = tf.matrix_diag(tf.matrix_diag(self.adj_ori_dense))
new_adj_diag = tf.matrix_diag(tf.matrix_diag_part(self.x_tilde)) # diagnal matrix
ori_adj_diag = tf.reshape(ori_adj_diag, [-1])
new_adj_flat = tf.reshape(self.x_tilde, [-1])
ori_adj_flat = tf.reshape(self.adj_ori_dense, [-1])
### doing the softmax function
new_adj_for_del_exp = tf.exp(new_adj_for_del)
new_adj_for_del_exp = tf.where(upper_bool_label, x=new_adj_for_del_exp,
y=tf.zeros_like(new_adj_for_del_exp), name="softmax_mask")
new_adj_for_del_softmax = new_adj_for_del_exp / tf.reduce_sum(new_adj_for_del_exp)
new_adj_for_del_softmax = tf.reshape(new_adj_for_del_softmax, [-1])
############ delete k edges
self.new_adj = self.delete_edge(self.x_tilde,
self.indexes_add_orig,self.noised_num, self.k)
# self.new_feature_prob = self.generate_feature_prob(self.z_x, self.feature_dense, self.input_dim, self.input_dim * 2)
# self.flip_feature_indexes = self.flip_features(self.clean_indexes, k = FLAGS.k_features)
return
def delete_edge(self, x_tilde, noised_index,noised_num, k):
"""
delete_mask_idx_sparse
select the minimum k edges to delete
"""
row = noised_index // self.n_samples
col = noised_index % self.n_samples
selected = tf.where(tf.greater(col, row))
noised_index = tf.gather(noised_index, selected)
new_row = noised_index // self.n_samples
new_col = noised_index % self.n_samples
noised_index = (tf.stack([new_row,new_col], axis = -1))[:,0,:]
#noised_index = tf.squeeze(tf.stack([new_row,new_col], axis = -1))
sampled_dist = tf.gather_nd(x_tilde, noised_index)
sampled_dist = tf.reshape(sampled_dist, [-1])
sampled_dist = tf.reduce_max(sampled_dist) - sampled_dist # delete the edges with smallest edges
sampled_dist = tf.nn.softmax(sampled_dist)
_, indexes = tf.nn.top_k(sampled_dist, tf.minimum(noised_num, k))
new_indexes = tf.gather(noised_index, indexes, axis = 0)
self.test_noised_index = noised_index
self.test_new_indexes = new_indexes
self.test_sampled_dist = sampled_dist
row_idx = new_indexes[:,0]
col_idx = new_indexes[:,1]
indices = tf.stack([row_idx, col_idx], axis = -1)
indices_other = tf.stack([col_idx, row_idx], axis = -1)
indices = tf.concat([indices, indices_other], 0)
indices = tf.cast(indices, tf.int64)
shape = [self.n_samples, self.n_samples]
delete_mask_idx_sparse = tf.SparseTensor(indices,tf.ones_like(indices[:,0], dtype = tf.int64), shape)
delete_mask_idx_sparse = tf.cast(delete_mask_idx_sparse, tf.bool)
new_adj = tf.where(tf.sparse.to_dense(delete_mask_idx_sparse, default_value = False, validate_indices = False),
x = tf.cast(self.zeros, tf.float32), y = self.adj_ori_dense)
return new_adj
# def flip_features(self,clean_indexes, k = 10, reuse = tf.AUTO_REUSE):
# with tf.variable_scope("generate_flip_fea") as scope:
# feature_dense = self.feature_dense[:,:FLAGS.k_features_dim]
# node_feature = feature_dense - self.new_feature_prob
# node_feature = tf.norm(node_feature, axis = -1)
# _, indexes = tf.nn.top_k(node_feature, tf.minimum(self.n_samples, k))
# return indexes
def encoder(self, inputs):
with tf.variable_scope('encoder') as scope:
self.hidden1 = GraphConvolutionSparse(input_dim=self.input_dim,
output_dim=FLAGS.hidden1,
adj=self.adj,
features_nonzero=self.features_nonzero,
act=tf.nn.relu,
dropout=self.dropout,
logging=self.logging, name = "encoder_conv1")(inputs)
self.z_mean = GraphConvolution(input_dim=FLAGS.hidden1,
output_dim=FLAGS.latent_dim,
adj=self.adj,
act=lambda x: x,
dropout=self.dropout,
logging=self.logging,name = "encoder_conv2")(self.hidden1)
self.z_log_std = GraphConvolution(input_dim=FLAGS.hidden1,
output_dim=FLAGS.latent_dim,
adj=self.adj,
act=lambda x: x,
dropout=self.dropout,
logging=self.logging,name = "encoder_conv3")(self.hidden1)
z = self.z_mean + tf.random_normal([self.n_samples, FLAGS.latent_dim]) * tf.exp(
self.z_log_std) # middle hidden layer
return z
def generate_dense(self, input_z, input_dim, graph_dim, reuse = False):
input_dim = int(input_dim)
with tf.variable_scope('generate') as scope:
if reuse == True:
scope.reuse_variables()
update_temp = []
## the element wise product to replace the current inner product with size n^2*d
for i in range(0, self.n_samples):
update_temp.append(input_z[i, :] * input_z)
final_update = tf.stack(update_temp, axis=0)
reconstructions = tf.layers.dense(final_update, 1,use_bias=False, activation = tf.nn.sigmoid, name="gen_dense2")
reconstructions = tf.squeeze(reconstructions)
return reconstructions
# def generate_feature_prob(self, input_z,input_feature,input_dim, hidden1_dim, reuse = False):
# with tf.variable_scope('generate_feature') as scope:
# if reuse == True:
# scope.reuse_variables()
# h1 = FullyConnect(output_size=hidden1_dim, scope="generate_feature_full1")(input_z)
# h1 = tf.nn.relu(h1)
# H = FullyConnect(output_size=FLAGS.k_features_dim, scope="generate_feature_full2")(h1)
# N = tf.nn.softmax(H, axis = -1) # then shape of N is n*d
# input_feature = input_feature[:, :FLAGS.k_features_dim]
# ones = tf.ones_like(input_feature)
# X =input_feature * (1 - N) + (ones - input_feature) * N
# return X
def discriminate_mock_detect(self, inputs,new_adj, reuse = False):
with tf.variable_scope('discriminate') as scope:
if reuse == True:
scope.reuse_variables()
self.dis_hidden = GraphConvolutionSparse_denseadj(input_dim=self.input_dim,
output_dim=FLAGS.hidden1,
adj=new_adj,
features_nonzero=self.features_nonzero,
act=tf.nn.relu,
dropout=self.dropout,
logging=self.logging, name ="dis_conv1_sparse")((inputs, new_adj))
self.dis_z_mean = GraphConvolution_denseadj(input_dim=FLAGS.hidden1,
output_dim=FLAGS.hidden2,
adj=new_adj,
act=lambda x: x,
dropout=self.dropout,
logging=self.logging, name='dis_conv2')((self.dis_hidden, new_adj))
############################
self.dis_z_mean_norm = tf.nn.softmax(self.dis_z_mean, axis = -1)
############################
self.dis_fully1 =tf.nn.relu(batch_normal(FullyConnect(output_size=256, scope='dis_fully1')(self.dis_z_mean),scope='dis_bn1', reuse = reuse))
self.dis_output = FullyConnect(output_size = self.n_clusters, scope='dis_fully2')(self.dis_fully1)
# the softmax layer for the model
self.dis_output_softmax = tf.nn.softmax(self.dis_output, axis=-1)
return self.dis_output_softmax
def get_edge_indexes(self, x_tilde, adj_dense, n_clusters):
node_comm = tf.argmax(x_tilde, axis = -1)
in_clus_idx_list = []
adj_diag = adj_dense - tf.matrix_diag(tf.diag_part(adj_dense))
for i in range(n_clusters):
selected_node_idx = tf.where(tf.equal(node_comm,
tf.constant(i, dtype = tf.int64)))
indices = tf.expand_dims(selected_node_idx, 1)
values = tf.ones_like(selected_node_idx)
shape = selected_node_idx.shape
import pdb; pdb.set_trace()
sparse_onehot_tensor = tf.SparseTensor(indices, values, shape)
onehot_dense = tf.sparse_tensor_to_dense(sparse_onehot_tensor)
mask = tf.matmul(onehot_dense.transpose(), onehot_dense)
in_clus_idx_list.append(selected_node_idx)
return
def intersect_edges(self,indexes_delete, indexes_orig):
intersect = tf.sets.set_intersection(indexes_delete[None,:],
indexes_orig[None,:])
intersect = tf.sparse_tensor_to_dense(intersect)
length = tf.ones_like(intersect)
return tf.reduce_sum(length)
pass