-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_iter.py
395 lines (377 loc) · 18.8 KB
/
main_iter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
import tensorflow as tf
import random
import tensorflow.contrib.slim as slim
from utils import randomly_add_edges, randomly_delete_edges, randomly_flip_features,flip_features_fix_attr
from utils import add_edges_between_labels, denoise_ratio, get_noised_indexes, load_data_subgraphs
from utils import PSNR, WL,WL_no_label
from sklearn.metrics import roc_auc_score
from sklearn.metrics import average_precision_score
from sklearn.preprocessing import normalize
import datetime
import numpy as np
import scipy.sparse as sp
import time
import os
seed = 152
np.random.seed(seed)
tf.set_random_seed(seed)
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
from preprocessing import preprocess_graph, construct_feed_dict, sparse_to_tuple, mask_test_edges,get_target_nodes_and_comm_labels, construct_feed_dict_trained
from mask_gvae import mask_gvae
from optimizer import Optimizer
from gcn.utils import load_data
from tqdm import tqdm
from gcn import train_test as GCN
from graph.dataset import load
# Settings
flags = tf.app.flags
FLAGS = flags.FLAGS
### BN maybe cause the error
###
##### this is for gae part
flags.DEFINE_integer('n_clusters', 10, 'Number of epochs to train.') # this one can be calculated according to labels
flags.DEFINE_integer('epochs', 5, 'Number of epochs to train.')
flags.DEFINE_integer('hidden1',64, 'Number of units in hidden layer 1.')
flags.DEFINE_integer('hidden2', 16, 'Number of units in hidden layer 2.')
flags.DEFINE_float('weight_decay', 0., 'Weight for L2 loss on embedding matrix.')
####### for clean gcn training and test
flags.DEFINE_float('gcn_learning_rate', 0.01, 'Initial learning rate.')
flags.DEFINE_integer('gcn_hidden1', 16, 'Number of units in hidden layer 1.')
flags.DEFINE_float('gcn_weight_decay', 5e-4, 'Weight for L2 loss on embedding matrix.')
flags.DEFINE_integer('early_stopping', 10, 'Tolerance for: early stopping (# of epochs).')
###########################
flags.DEFINE_float('dropout', 0.3, 'Dropout rate (1 - keep probability).')
flags.DEFINE_float('mincut_r', 0.01, 'The r parameters for the cutmin loss orth loss') # ORTH LOSS
flags.DEFINE_string('model', 'mask_gvae', 'Model string.')
flags.DEFINE_string('dataset', 'PTC_MR', 'Dataset string.')
flags.DEFINE_float("noise_ratio" , 0.1, "the init of learn rate")
flags.DEFINE_integer('features', 1, 'Whether to use features (1) or not (0).')
from tensorflow.python.client import device_lib
flags.DEFINE_integer("batch_size" , 64, "batch size")
flags.DEFINE_integer("latent_dim" , 16, "the dim of latent code")
flags.DEFINE_float("learn_rate_init" , 1e-03, "the init of learn rate")
flags.DEFINE_float("learn_rate_init_gen" , 1e-04, "the init of learn rate")
flags.DEFINE_integer("k", 20, "The edges to delete for the model")
flags.DEFINE_integer("k_noise", 20, "The k edges to add noise")
flags.DEFINE_integer("k_features", 300, "The nodes to flip features for the model")
flags.DEFINE_integer("k_features_noise", 300, "The nodes to add noise and flip features")
flags.DEFINE_integer("k_features_dim", 1, "The nodes to add noise and flip features")
flags.DEFINE_float('ratio_loss_fea', 1, 'the ratio of generate loss for features')
flags.DEFINE_boolean("train", True, "Training or Test")
###############################
if_train = FLAGS.train
cv_index = int(if_train)
run_options = tf.RunOptions(report_tensor_allocations_upon_oom = True)
###################################
### read and process the graph
model_str = FLAGS.model
dataset_str = FLAGS.dataset
noise_ratio = 0.1
## Load datasets
# dataset_index = "IMDB-BINARY"
# IMDB-BINARY, IMDB-MULTI, REDDIT-BINARY, MUTAG, PTC_MR
dataset_index = 'PTC_MR'
train_structure_input, train_feature_input, train_y, \
train_num_nodes_all, test_structure_input, test_feature_input, \
test_y, test_num_nodes_all = load_data_subgraphs(dataset_index, train_ratio=0.9)
##
# Load data
adj, features, y_train, y_val, y_test, train_mask, val_mask, test_mask = load_data("citeseer")
adj_norm, adj_norm_sparse = preprocess_graph(adj)
n_class = FLAGS.n_clusters
features_normlize = normalize(features.tocsr(), axis=0, norm='max')
features = sp.csr_matrix(features_normlize)
if FLAGS.features == 0:
features = sp.identity(features.shape[0]) # featureless
# Some preprocessing
num_nodes = adj.shape[0]
features_csr = features
features_csr = features_csr.astype('float32')
features = sparse_to_tuple(features.tocoo())
num_features = features[2][1]
features_nonzero = features[1].shape[0]
gpu_id = 1
# Create model
cost_val = []
acc_val = []
val_roc_score = []
def get_new_adj(feed_dict, sess, model, noised_index, adj_new, k, num_node):
x_tilde = model.x_tilde.eval(session=sess, feed_dict=feed_dict)
new_adj = adj_new.copy()
noised_index = np.array(noised_index)
if (len(noised_index) == 0) or (k == 0):
return new_adj
row = noised_index // adj_new.shape[0]
col = noised_index % adj_new.shape[0]
possible_edges = np.stack([row,col], axis = 0)
noised_edges = []
for i in range(possible_edges.shape[1]):
if (possible_edges[0,i] > possible_edges[1,i]) and (possible_edges[0,i] < num_node) and (possible_edges[1,i] < num_node):
noised_edges.append([possible_edges[:,i]])
if len(noised_edges) == 0:
return new_adj
mask = np.ones_like(x_tilde)
noised_edges = np.array(noised_edges)[:,0,:]
mask[noised_edges[:,0], noised_edges[:,1]] = x_tilde[noised_edges[:,0], noised_edges[:,1]]
mask_flat = mask.flatten()
idxes_list = np.argsort(mask_flat)
selected_idx = np.squeeze(idxes_list[:min(len(idxes_list), k)])
row = selected_idx // x_tilde.shape[0]
col = selected_idx % x_tilde.shape[0]
new_adj[row, col] = 0
new_adj[col, row] = 0
new_adj = new_adj - sp.dia_matrix((new_adj.diagonal()[np.newaxis, :], [0]),
shape=new_adj.shape)
return new_adj
def add_noises_on_adjs(adj_list, num_nodes, noise_ratio = 0.1, ):
noised_adj_list = []
# add_idx_list = []
adj_orig_list = []
k_list = []
for i in range(len(adj_list)):
adj_orig = adj_list[i]
adj_orig = adj_orig - sp.dia_matrix((adj_orig.diagonal()[np.newaxis, :], [0]),
shape=adj_orig.shape) # delete self loop
adj_orig.eliminate_zeros()
# adj_new, add_idxes = add_edges_between_labels(adj_orig, int(noise_ratio* num_nodes[i]), y_train)
adj_new,k_real = randomly_add_edges(adj_orig, int(noise_ratio* adj_orig[:num_nodes[i], :num_nodes[i]].sum() / 2), num_nodes[i])
k_list.append(k_real)
noised_adj_list.append(adj_new)
# add_idx_list.append(add_idxes)
adj_orig_list.append(adj_orig)
return noised_adj_list, adj_orig_list, k_list
def get_new_feature(feed_dict, sess,flip_features_csr, feature_entry, model):
new_indexes = model.flip_feature_indexes.eval(session = sess, feed_dict = feed_dict)
flip_features_lil = flip_features_csr.tolil()
for index in new_indexes:
for j in feature_entry:
flip_features_lil[index, j] = 1 - flip_features_lil[index, j]
return flip_features_lil.tocsr()
# Train model
def train():
## add noise label
train_adj_list, train_adj_orig_list, train_k_list = add_noises_on_adjs(train_structure_input, train_num_nodes_all)
test_adj_list, test_adj_orig_list, test_k_list = add_noises_on_adjs(test_structure_input, test_num_nodes_all)
adj = train_adj_list[0]
features_csr = train_feature_input[0]
features = sparse_to_tuple(features_csr.tocoo())
num_features = features[2][1]
features_nonzero = features[1].shape[0]
adj_orig = train_adj_orig_list[0]
adj_label = train_adj_list[0] + sp.eye(adj.shape[0])
adj_label = sparse_to_tuple(adj_label)
num_nodes = adj.shape[0]
############
global_steps = tf.get_variable('global_step', trainable=False, initializer=0)
new_learning_rate_dis = tf.train.exponential_decay(FLAGS.learn_rate_init, global_step=global_steps, decay_steps=100,
decay_rate=0.95)
new_learning_rate_gen = tf.train.exponential_decay(FLAGS.learn_rate_init_gen, global_step=global_steps, decay_steps=100,
decay_rate=0.95)
new_learn_rate_value = FLAGS.learn_rate_init
## set the placeholders
placeholders = {
'features': tf.sparse_placeholder(tf.float32, name= "ph_features"),
'adj': tf.sparse_placeholder(tf.float32,name= "ph_adj"),
'adj_orig': tf.sparse_placeholder(tf.float32, name = "ph_orig"),
'dropout': tf.placeholder_with_default(0.3, shape=(), name = "ph_dropout"),
'clean_mask': tf.placeholder(tf.int32),
'noised_mask': tf.placeholder(tf.int32),
'noised_num':tf.placeholder(tf.int32),
'node_mask':tf.placeholder(tf.float32)
}
# build models
model = None
adj_clean = adj_orig.tocoo()
adj_clean_tensor = tf.SparseTensor(indices =np.stack([adj_clean.row,adj_clean.col], axis = -1),
values = adj_clean.data, dense_shape = adj_clean.shape )
if model_str == "mask_gvae":
model = mask_gvae(placeholders, num_features, num_nodes, features_nonzero,
new_learning_rate_dis, new_learning_rate_gen,
adj_clean = adj_clean_tensor, k = int(adj.sum()*noise_ratio))
model.build_model()
pos_weight = float(adj.shape[0] * adj.shape[0] - adj.sum()) / adj.sum()
norm = adj.shape[0] * adj.shape[0] / float((adj.shape[0] * adj.shape[0] - adj.sum()) * 2)
opt = 0
# Optimizer
with tf.name_scope('optimizer'):
if model_str == 'mask_gvae':
opt = Optimizer(preds=tf.reshape(model.x_tilde, [-1]),
labels=tf.reshape(
tf.sparse_tensor_to_dense(placeholders['adj_orig'], validate_indices=False),
[-1]),
model=model,
num_nodes=num_nodes,
global_step=global_steps,
new_learning_rate = new_learning_rate_dis,
new_learning_rate_gen = new_learning_rate_gen,
placeholders = placeholders
)
# init the sess
sess = tf.Session()
sess.run(tf.global_variables_initializer())
### initial clean and noised_mask
clean_mask = np.array([1,2,3,4,5])
noised_mask = np.array([6,7,8,9,10])
noised_num = noised_mask.shape[0] / 2
# ##################################
feed_dict = construct_feed_dict(adj_norm, adj_label, features,clean_mask, noised_mask,noised_num, placeholders)
node_mask = np.ones([num_nodes, n_class])
node_mask[train_num_nodes_all[0]:, :] = 0
feed_dict.update({placeholders['node_mask']:node_mask})
feed_dict.update({placeholders['dropout']: FLAGS.dropout})
# #####################################################
if if_train:
for epoch in range(FLAGS.epochs):
for i in tqdm(range(len(train_feature_input))):
train_one_graph(train_adj_list[i], train_adj_orig_list[i], train_feature_input[i], train_num_nodes_all[i], train_k_list[i], model, opt, placeholders,sess,new_learning_rate_gen,feed_dict, epoch, i)
saver = tf.train.Saver()
saver.save(sess, "./checkpoints/{}/model.ckpt".format(cv_index))
print("Optimization Finished!")
psnr_list = []
wls_list = []
for i in range(len(test_feature_input)):
psnr, wls = test_one_graph(test_adj_list[i], test_adj_orig_list[i],test_feature_input[i],test_num_nodes_all[i],test_k_list[i] , model, placeholders, sess, feed_dict)
psnr_list.append(psnr)
wls_list.append(wls)
# new_adj = get_new_adj(feed_dict,sess, model)
else:
saver = tf.train.Saver()
saver.restore(sess, "./checkpoints/{}/model.ckpt".format(cv_index))
psnr_list = []
wls_list = []
for i in range(len(test_feature_input)):
psnr, wls = test_one_graph(test_adj_list[i],test_adj_orig_list[i], test_feature_input[i], test_num_nodes_all[i], test_k_list[i], model, placeholders, sess, feed_dict)
psnr_list.append(psnr)
wls_list.append(wls)
##################################
################## the PSRN and WL #########################
print("#"*15)
print("The PSNR is:")
psnr_list = [x for x in psnr_list if x != float("inf")] ## here isa bug, we can not check it
print(np.mean(psnr_list))
print("The WL is :")
print(np.mean(wls_list))
return psnr,wls
def train_one_graph(adj,adj_orig, features_csr ,num_node, k_num ,model, opt,placeholders, sess,new_learning_rate,feed_dict, epoch, graph_index):
adj_orig = adj_orig - sp.dia_matrix((adj_orig.diagonal()[np.newaxis, :], [0]),
shape=adj_orig.shape) # delete self loop
adj_orig.eliminate_zeros()
adj_new = adj
row_sum = adj_new.sum(1).A1
row_sum = sp.diags(row_sum)
L = row_sum - adj_new
ori_Lap = features_csr.transpose().dot(L).dot(features_csr)
ori_Lap_trace = ori_Lap.diagonal().sum()
ori_Lap_log = np.log(ori_Lap_trace)
features = sparse_to_tuple(features_csr.tocoo())
adj_norm, adj_norm_sparse = preprocess_graph(adj_new)
adj_norm_sparse_csr = adj_norm_sparse.tocsr()
adj_label = adj_new + sp.eye(adj.shape[0])
adj_label = sparse_to_tuple(adj_label)
############
## set the placeholders
# build models
adj_clean = adj_orig.tocoo()
adj_clean_tensor = tf.SparseTensor(indices =np.stack([adj_clean.row,adj_clean.col], axis = -1),
values = adj_clean.data, dense_shape = adj_clean.shape )
# pos_weight = float(adj.shape[0] * adj.shape[0] - adj.sum()) / adj.sum()
# norm = adj.shape[0] * adj.shape[0] / float((adj.shape[0] * adj.shape[0] - adj.sum()) * 2)
### initial clean and noised_mask
clean_mask = np.array([1,2,3,4,5])
noised_mask = np.array([6,7,8,9,10])
noised_num = noised_mask.shape[0] / 2
##################################
#
feed_dict.update({placeholders["adj"]: adj_norm})
feed_dict.update({placeholders["adj_orig"]: adj_label})
feed_dict.update({placeholders["features"]: features})
node_mask = np.ones([adj.shape[0], n_class])
node_mask[num_node:, :] = 0
feed_dict.update({placeholders['node_mask']: node_mask})
feed_dict.update({placeholders['dropout']: FLAGS.dropout})
model.k = k_num
#####################################################
t = time.time()
########
# last_reg = current_reg
if epoch > int(FLAGS.epochs / 2): ## here we can contorl the manner of new model
# if epoch >0: ## here we can contorl the manner of new model
x_tilde = sess.run(model.realD_tilde, feed_dict=feed_dict, options=run_options)
noised_indexes, clean_indexes = get_noised_indexes(x_tilde, adj_new, num_node)
feed_dict.update({placeholders["noised_mask"]: noised_indexes})
feed_dict.update({placeholders["clean_mask"]: clean_indexes})
feed_dict.update({placeholders["noised_num"]: len(noised_indexes) / 2})
_= sess.run([opt.G_min_op], feed_dict=feed_dict,options=run_options)
else:
_, x_tilde = sess.run([opt.D_min_op, model.realD_tilde], feed_dict = feed_dict, options=run_options)
if epoch == int(FLAGS.epochs / 2):
noised_indexes, clean_indexes = get_noised_indexes(x_tilde, adj_new, num_node)
feed_dict.update({placeholders["noised_mask"]: noised_indexes})
feed_dict.update({placeholders["clean_mask"]: clean_indexes})
feed_dict.update({placeholders["noised_num"]: len(noised_indexes)/2})
##
if epoch % 1 == 0 and graph_index == 0:
if epoch > int(FLAGS.epochs / 2):
print("This is the generation part")
else:
print("This is the cluster mask part")
print("Epoch:", '%04d' % (epoch + 1),
"time=", "{:.5f}".format(time.time() - t))
G_loss,D_loss, new_learn_rate_value = sess.run([opt.G_comm_loss,opt.D_loss,new_learning_rate],feed_dict=feed_dict, options = run_options)
print("Step: %d,G: loss=%.7f ,L_u: loss= %.7f, LR=%.7f" % (epoch, G_loss,D_loss + 1, new_learn_rate_value))
##########################################
return
def test_one_graph(adj , adj_orig, features_csr, num_node, k_num ,model,placeholders, sess, feed_dict):
adj_orig = adj_orig - sp.dia_matrix((adj_orig.diagonal()[np.newaxis, :], [0]),
shape=adj_orig.shape) # delete self loop
adj_orig.eliminate_zeros()
adj_new = adj
row_sum = adj_new.sum(1).A1
row_sum = sp.diags(row_sum)
L = row_sum - adj_new
ori_Lap = features_csr.transpose().dot(L).dot(features_csr)
ori_Lap_trace = ori_Lap.diagonal().sum()
ori_Lap_log = np.log(ori_Lap_trace)
features = sparse_to_tuple(features_csr.tocoo())
adj_label = adj_new + sp.eye(adj.shape[0])
adj_label_sparse = adj_label
adj_label = sparse_to_tuple(adj_label)
adj_clean = adj_orig.tocsr()
if k_num !=0:
adj_norm, adj_norm_sparse = preprocess_graph(adj_new)
feed_dict.update({placeholders["adj"]: adj_norm})
feed_dict.update({placeholders["adj_orig"]: adj_label})
feed_dict.update({placeholders["features"]: features})
feed_dict.update({placeholders['dropout']: FLAGS.dropout})
model.k = k_num
# feed_dict = construct_feed_dict(adj_norm, adj_label, features, clean_mask, noised_mask, noised_num, placeholders)
x_tilde = sess.run(model.realD_tilde, feed_dict=feed_dict, options=run_options)
noised_indexes, clean_indexes = get_noised_indexes(x_tilde, adj_new, num_node)
feed_dict.update({placeholders["noised_mask"]: noised_indexes})
feed_dict.update({placeholders["clean_mask"]: clean_indexes})
feed_dict.update({placeholders["noised_num"]: len(noised_indexes) / 2})
test1 = model.test_new_indexes.eval(session=sess, feed_dict=feed_dict)
test0 = model.test_noised_index.eval(session=sess, feed_dict=feed_dict)
print("########")
print(test0)
print(test1)
print(k_num)
print(len(noised_indexes))
new_adj = get_new_adj(feed_dict, sess, model,noised_indexes, adj_new, k_num, num_node)
else:
new_adj = adj_clean
new_adj_sparse = sp.csr_matrix(new_adj)
psnr = PSNR(adj_clean[:num_node, :num_node], new_adj_sparse[:num_node, :num_node])
y_label = y_train + y_val + y_test
wls = WL_no_label(adj_clean[:num_node, :num_node], new_adj_sparse[:num_node, :num_node])
return psnr, wls
FLAGS = flags.FLAGS
if __name__ == "__main__":
current_time = datetime.datetime.now().strftime("%y%m%d%H%M%S")
with open("results/results_%d_%s.txt"%(FLAGS.k, current_time), 'w+') as f_out:
f_out.write( 'PSNR'+ ' ' + 'WL' + "\n")
for i in range(1):
psnr,wls = train()
f_out.write(str(psnr)+ ' '+str(wls) + "\n")
print(dataset_index)
print(current_time)