-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtrain.py
236 lines (194 loc) · 10.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import os
import torch
import numpy as np
import torch.utils.data as Data
from torch.optim.lr_scheduler import ReduceLROnPlateau
import argparse
import tqdm, wandb
from utils import move_to
from model import net_dict
from pyhocon import ConfigFactory
from pyhocon import HOCONConverter as conf_convert
from datasets import SeqeuncesDataset, collate_fcs
from model.losses import get_loss
from eval import evaluate
torch.autograd.set_detect_anomaly(True)
def train(network, loader, confs, epoch, optimizer):
"""
Train network for one epoch using a specified data loader
Outputs all targets, predicts, predicted covariance params, and losses
"""
network.train()
losses, pos_losses, rot_losses, vel_losses = 0, 0, 0, 0
pred_cov_rot, pred_cov_vel, pred_cov_pos = 0, 0, 0
acc_covs, gyro_covs = 0, 0
t_range = tqdm.tqdm(loader)
for i, (data, init_state, label) in enumerate(t_range):
data, init_state, label = move_to([data, init_state, label], confs.device)
inte_state = network(data, init_state)
loss_state = get_loss(inte_state, label, confs)
# statistics
losses += loss_state['loss'].item()
pos_losses += loss_state['pos'].item()
rot_losses += loss_state['rot'].item()
vel_losses += loss_state['vel'].item()
if confs.propcov:
acc_covs += inte_state["acc_cov"].mean().item()
gyro_covs += inte_state["gyro_cov"].mean().item()
pred_cov_pos += loss_state['pred_cov_pos'].mean().item()
pred_cov_rot += loss_state['pred_cov_rot'].mean().item()
pred_cov_vel += loss_state['pred_cov_vel'].mean().item()
t_range.set_description(f'training epoch: %03d, losses: %.06f, position, %.06f rotation %.06f, pred_rot %.06f, pred_cov%.06f'%(epoch, \
loss_state['loss'], (pos_losses/(i+1)), (rot_losses/(i+1)), \
loss_state['pred_cov_rot'], loss_state['pred_cov_pos']))
else:
t_range.set_description(f'training epoch: %03d, losses: %.06f, position, %.06f rotation %.06f, velocity %.06f'%(epoch, \
loss_state['loss'], (pos_losses/(i+1)), (rot_losses/(i+1)), loss_state['vel']))
t_range.refresh()
optimizer.zero_grad()
loss_state['loss'].backward()
optimizer.step()
return {"loss": (losses/(i+1)), "pos_loss": (pos_losses/(i+1)), "rot_loss": (rot_losses/(i+1)), "vel_loss":((vel_losses)/(i+1)),
"pred_cov_rot": (pred_cov_rot/(i+1)), "pred_cov_vel": (pred_cov_vel/(i+1)), "pred_cov_pos": (pred_cov_pos/(i+1))}
def test(network, loader, confs):
network.eval()
with torch.no_grad():
losses, pos_losses, rot_losses, vel_losses = 0, 0, 0, 0
pred_cov_rot, pred_cov_vel, pred_cov_pos = 0, 0, 0
acc_covs, gyro_covs = [], []
t_range = tqdm.tqdm(loader)
for i, (data, init_state, label) in enumerate(t_range):
data, init_state, label = move_to([data, init_state, label], confs.device)
inte_state = network(data, init_state)
loss_state = get_loss(inte_state, label, confs)
# statistics
losses += loss_state['loss'].item()
pos_losses += loss_state["pos"].item()
rot_losses += loss_state["rot"].item()
vel_losses += loss_state['vel'].item()
if confs.propcov:
acc_covs.append(inte_state["acc_cov"].reshape(-1))
gyro_covs.append(inte_state["gyro_cov"].reshape(-1))
pred_cov_pos += loss_state['pred_cov_pos'].mean().item()
pred_cov_rot += loss_state['pred_cov_rot'].mean().item()
pred_cov_vel += loss_state['pred_cov_vel'].mean().item()
t_range.set_description(f'testing losses: %.06f, position, %.06f rotation %.06f, vel %.06f'%(losses/(i+1), \
pos_losses/(i+1), rot_losses/(i+1), vel_losses/(i+1)))
t_range.refresh()
if acc_covs:
acc_covs = torch.cat(acc_covs)
if gyro_covs:
gyro_covs = torch.cat(gyro_covs)
return {"loss": (losses/(i+1)), "pos_loss":(pos_losses/(i+1)), "rot_loss":(rot_losses/(i+1)), "vel_loss":(vel_losses/(i+1)),
"pred_cov_rot": (pred_cov_rot/(i+1)), "pred_cov_vel": (pred_cov_vel/(i+1)), "pred_cov_pos": (pred_cov_pos/(i+1)), "acc_covs": acc_covs, "gyro_covs": gyro_covs}
def write_wandb(header, objs, epoch_i):
if isinstance(objs, dict):
for k, v in objs.items():
if isinstance(v, float):
wandb.log({os.path.join(header, k): v}, epoch_i)
else:
wandb.log({header: objs}, step = epoch_i)
def save_ckpt(network, optimizer, scheduler, epoch_i, test_loss, conf, save_best = False):
if epoch_i%conf.train.save_freq==conf.train.save_freq-1:
torch.save({
'epoch': epoch_i,
'model_state_dict': network.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'scheduler_state_dict': scheduler.state_dict(),
'best_loss': test_loss,
}, os.path.join(conf.general.exp_dir, "ckpt/%04d.ckpt"%epoch_i))
if save_best:
print("saving the best model", test_loss)
torch.save({
'epoch': epoch_i,
'model_state_dict': network.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'scheduler_state_dict': scheduler.state_dict(),
'best_loss': test_loss,
}, os.path.join(conf.general.exp_dir, "ckpt/best_model.ckpt"))
torch.save({
'epoch': epoch_i,
'model_state_dict': network.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'scheduler_state_dict': scheduler.state_dict(),
'best_loss': test_loss,
}, os.path.join(conf.general.exp_dir, "ckpt/newest.ckpt"))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str, default='configs/exp/EuRoC/codenet.conf', help='config file path')
parser.add_argument('--device', type=str, default="cuda:0", help="cuda or cpu, Default is cuda:0")
parser.add_argument('--load_ckpt', default=False, action="store_true", help="If True, try to load the newest.ckpt in the \
exp_dir specificed in our config file.")
parser.add_argument('--log', default=True, action="store_false", help="if True, save the meta data with wandb")
args = parser.parse_args(); print(args)
conf = ConfigFactory.parse_file(args.config)
# torch.cuda.set_device(args.device)
conf.train.device = args.device
exp_folder = os.path.split(conf.general.exp_dir)[-1]
conf_name = os.path.split(args.config)[-1].split(".")[0]
conf['general']['exp_dir'] = os.path.join(conf.general.exp_dir, conf_name)
if 'collate' in conf.dataset.keys():
collate_fn = collate_fcs[conf.dataset.collate]
else:
collate_fn = collate_fcs['base']
train_dataset = SeqeuncesDataset(data_set_config=conf.dataset.train)
test_dataset = SeqeuncesDataset(data_set_config=conf.dataset.test)
eval_dataset = SeqeuncesDataset(data_set_config=conf.dataset.eval)
train_loader = Data.DataLoader(dataset=train_dataset, batch_size=conf.train.batch_size, shuffle=True, collate_fn=collate_fn)
test_loader = Data.DataLoader(dataset=test_dataset, batch_size=conf.train.batch_size, shuffle=False, collate_fn=collate_fn)
eval_loader = Data.DataLoader(dataset=eval_dataset, batch_size=1, shuffle=False, collate_fn=collate_fn)
os.makedirs(os.path.join(conf.general.exp_dir, "ckpt"), exist_ok=True)
with open(os.path.join(conf.general.exp_dir, "parameters.yaml"), "w") as f:
f.write(conf_convert.to_yaml(conf))
if not args.log:
wandb.disabled = True
print("wandb is disabled")
else:
wandb.init(project= "AirIMU_" + exp_folder,
config= conf.train,
group = conf.train.network,
name = conf_name,)
## optimizer
network = net_dict[conf.train.network](conf.train).to(device = args.device, dtype = train_dataset.get_dtype())
optimizer = torch.optim.Adam(network.parameters(), lr = conf.train.lr, weight_decay=conf.train.weight_decay) # to use with ViTs
scheduler = ReduceLROnPlateau(optimizer, 'min', factor = conf.train.factor, patience = conf.train.patience, min_lr = conf.train.min_lr)
best_loss = np.inf
epoch = 0
## load the chkp if there exist
if args.load_ckpt:
if os.path.isfile(os.path.join(conf.general.exp_dir, "ckpt/newest.ckpt")):
checkpoint = torch.load(os.path.join(conf.general.exp_dir, "ckpt/newest.ckpt"), map_location = args.device)
network.load_state_dict(checkpoint["model_state_dict"])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
scheduler.load_state_dict(checkpoint["scheduler_state_dict"])
epoch = checkpoint['epoch']
best_loss = checkpoint['best_loss']
print("loaded state dict %s best_loss %f"%(os.path.join(conf.general.exp_dir, "ckpt/newest.ckpt"), best_loss))
else:
print("Can't find the checkpoint")
for epoch_i in range(epoch, conf.train.max_epoches):
train_loss = train(network, train_loader, conf.train, epoch_i, optimizer)
test_loss = test(network, test_loader, conf.train)
print("train loss: %f test loss: %f"%(train_loss["loss"], test_loss["loss"]))
# save the training meta information
if args.log:
write_wandb("train", train_loss, epoch_i)
write_wandb("test", test_loss, epoch_i)
write_wandb("lr", scheduler.optimizer.param_groups[0]['lr'], epoch_i)
if epoch_i%conf.train.eval_freq == conf.train.eval_freq-1:
eval_state = evaluate(network=network, loader = eval_loader, confs=conf.train)
if args.log:
write_wandb('eval/pos_loss', eval_state['loss']['pos'].mean(), epoch_i)
write_wandb('eval/rot_loss', eval_state['loss']['rot'].mean(), epoch_i)
write_wandb('eval/vel_loss', eval_state['loss']['vel'].mean(), epoch_i)
write_wandb('eval/rot_dist', eval_state['loss']['rot_dist'].mean(), epoch_i)
write_wandb('eval/vel_dist', eval_state['loss']['vel_dist'].mean(), epoch_i)
write_wandb('eval/pos_dist', eval_state['loss']['pos_dist'].mean(), epoch_i)
print("eval pos: %f eval rot: %f"%(eval_state['loss']['pos'].mean(), eval_state['loss']['rot'].mean()))
scheduler.step(test_loss['loss'])
if test_loss['loss'] < best_loss:
best_loss = test_loss['loss'];save_best = True
else:
save_best = False
save_ckpt(network, optimizer, scheduler, epoch_i, best_loss, conf, save_best=save_best,)
wandb.finish()