-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrainer.py
280 lines (241 loc) · 13.7 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
import os
import time
import datetime
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.tensorboard import SummaryWriter
from modeling_bilstm import BiLSTM
class Distil_Trainer():
def __init__(self, input_dim = 8002, hidden_dim = 128, embedding_dim = 64, lstm_num_layers = 1, dropout = 0.3, tokenizer = None,
out_put_dir = "base", teacher_output = None, train_epoch = 5, lr = 0.001, step_size = 5, gamma = 0.9, base_lr = 0.001 / 2,
scheduler_tpye = "StepLR", loss_rate = 0.5, temperature = 10, loss_option = "kl_div", len_train_iter = None):
if tokenizer:
self.tokenizer = tokenizer
input_dim = len(tokenizer)
self.model = BiLSTM(input_dim, hidden_dim, 2, embedding_dim, lstm_num_layers, dropout).to("cuda") # input_dim = len(tokenitan)
self.hidden_dim = hidden_dim
self.embedding_dim = embedding_dim
self.lstm_num_layers = lstm_num_layers
self.dropout = dropout
self.optimizer = optim.Adam(self.model.parameters(), lr = lr) # default lr = 0.001
if scheduler_tpye == "StepLR":
self.scheduler = optim.lr_scheduler.StepLR(self.optimizer, step_size = step_size, gamma = gamma) # step_size = 2
elif scheduler_tpye == "CyclicLR":
self.scheduler = optim.lr_scheduler.CyclicLR(self.optimizer, base_lr = base_lr, max_lr = lr,
step_size_up = len_train_iter // 2, cycle_momentum = False)
self.criterion = nn.CrossEntropyLoss().to("cuda")
self.out_put_dir = out_put_dir
self.teacher_output = teacher_output
self.loss_rate = loss_rate
self.temperature = temperature
self.train_epoch = train_epoch
self.tb_suffix = "{}_input_{}_hidden_{}_embedding_{}_loss_rate_{}".format("_".join(out_put_dir.split("/")), input_dim, hidden_dim, embedding_dim, int(loss_rate * 100))
self.tb_writer = SummaryWriter(log_dir = "/content/gdrive/MyDrive/DistilKoBiLSTM/logs", filename_suffix = self.tb_suffix)
self.loss_option = loss_option
def __distil_loss(self, output, teacher_prob, real_label):
alpha = self.loss_rate
criterion_ce = nn.CrossEntropyLoss().to("cuda")
if self.loss_option == "kl_div":
criterion_kld = nn.KLDivLoss(reduction='batchmean').to("cuda")
distillation_loss = criterion_kld(
F.log_softmax(output / self.temperature, dim = 1),
F.softmax(teacher_prob / self.temperature, dim = 1)) * (self.temperature * self.temperature)
return alpha * criterion_ce(output, real_label) + (1 - alpha) * distillation_loss
elif self.loss_option == "mse":
criterion_mse = nn.MSELoss().to("cuda")
return alpha * criterion_ce(output, real_label) + (1 - alpha) * criterion_mse(output, teacher_prob)
else:
return criterion_ce(output, real_label)
@staticmethod
def __binary_accuracy(prediction, target):
rounded_preds = prediction.argmax(dim = 1)
correct = (rounded_preds == target).float()
return correct.sum() / len(correct)
@staticmethod
def __epoch_time(epoch_start):
epoch_end = time.time()
epoch_sec = (epoch_end - epoch_start)
epoch_result = datetime.timedelta(seconds = epoch_sec)
epoch_start = time.time()
return epoch_result, epoch_start
def train(self, train_iter):
self.model.train()
epoch_loss, epoch_acc = 0, 0
epoch_start = time.time()
print("run iter : ", len(train_iter))
for epoch, batch in enumerate(train_iter):
if epoch % 100 == 1:
print(" step: {} \n loss: {} \n acc: {}".format(epoch, loss, acc))
self.tb_writer.flush()
epoch_result, epoch_start = self.__epoch_time(epoch_start)
print("epoch{} runing time : {}".format(epoch, epoch_result))
self.optimizer.zero_grad()
x, y, idx = batch
x, y = x.to("cuda"), y.to("cuda")
y_prob = self.model(x).squeeze(1)
teacher_prob = [self.teacher_output[i.item()] for i in idx]
teacher_prob = torch.tensor(teacher_prob).to("cuda")
loss = self.__distil_loss(y_prob, teacher_prob, y)
acc = self.__binary_accuracy(y_prob, y)
loss.backward()
self.optimizer.step()
# self.tb_writer.add_scalar('loss'.format(self.tb_suffix), loss, epoch)
# self.tb_writer.add_scalar('val_acc'.format(self.tb_suffix), acc, epoch)
self.tb_writer.add_scalar('{}/loss'.format(self.tb_suffix), loss, epoch)
self.tb_writer.add_scalar('{}/val_acc'.format(self.tb_suffix), acc, epoch)
epoch_loss += loss.item()
epoch_acc += acc.item()
return epoch_loss / len(train_iter), epoch_acc / len(train_iter)
def evaluate(self, valid_iter, epoch):
self.model.eval()
with torch.no_grad():
eval_loss, eval_acc = 0, 0
for batch in valid_iter:
x, y, idx = batch
x = x.to("cuda")
y = y.to("cuda")
y_prob = self.model(x).squeeze(1)
teacher_prob = [self.teacher_output[i.item()] for i in idx]
teacher_prob = torch.tensor(teacher_prob).to("cuda")
loss = self.__distil_loss(y_prob, teacher_prob, y)
acc = self.__binary_accuracy(y_prob, y)
eval_loss += loss.item()
eval_acc += acc.item()
# self.tb_writer.add_scalar('ap_score', eval_acc / len(valid_iter), global_step = epoch)
# self.tb_writer.add_scalar('ap_simple_loss', eval_loss / len(valid_iter), global_step = epoch)
self.tb_writer.add_scalar('{}/ap_score'.format(self.tb_suffix), eval_acc / len(valid_iter), global_step = epoch)
self.tb_writer.add_scalar('{}/ap_simple_loss'.format(self.tb_suffix), eval_loss / len(valid_iter), global_step = epoch)
return eval_loss / len(valid_iter), eval_acc / len(valid_iter)
@staticmethod
def __create_folder(directory):
try:
if not os.path.exists(directory):
os.makedirs(directory)
except OSError:
print ('Error: Creating directory. ' + directory)
def trainer(self, train_iter, valid_iter, test_iter, return_model = False):
start = time.time()
dir_path = "model/" + self.out_put_dir
self.__create_folder(dir_path)
epoch_start = time.time()
for epoch in range(1, self.train_epoch + 1): # 5 epoch
print("hidden_dim : {} embedding_dim : {}".format(self.hidden_dim, self.embedding_dim))
train_loss, train_acc = self.train(train_iter)
valid_loss, valid_acc = self.evaluate(valid_iter, epoch)
print("[Epoch: %d] train loss : %5.3f | train accuracy : %5.3f" % (epoch, train_loss, train_acc))
print("[Epoch: %d] val loss : %5.3f | val accuracy : %5.3f" % (epoch, valid_loss, valid_acc))
self.scheduler.step() #lr scheduler
parameter_size = sum(p.numel() for p in self.model.parameters())
model_name = '/BiLSTMmodel_hidden_dim_{}_embedding_dim_{}_step{}_lstm_num_layers_{}_parameter_size_{}_acc_{}.pt'.format(self.hidden_dim, self.embedding_dim, epoch, self.lstm_num_layers, parameter_size, int(valid_acc * 10000))
torch.save(self.model.state_dict(), dir_path + model_name)
epoch_result, epoch_start = self.__epoch_time(epoch_start)
print("epoch{} runing time : {}".format(epoch, epoch_result))
end = time.time()
sec = (end - start)
result = datetime.timedelta(seconds = sec)
print("runing time : {}".format(result))
test_loss, test_acc = self.evaluate(test_iter, epoch)
print('Test Loss: %5.2f | Test Acc: %5.2f '%(test_loss, test_acc * 100))
result = str(result).split(".")[0].replace(":", "-")
model_name = '/EndModel_BiLSTMmodel_hidden_dim_{}_embedding_dim_{}_step{}_lstm_num_layers_{}_parameter_size_{}_acc_{}_RunningTime_{}.pt'.format(self.hidden_dim, self.embedding_dim, epoch, self.lstm_num_layers, parameter_size, int(test_acc * 10000), result)
torch.save(self.model.state_dict(), dir_path + model_name)
if return_model:
return self.model
return None
def predict_sentiment(self, sentence):
self.model.eval()
tokens = self.tokenizer(sentence, return_tensors = "pt", padding = True, truncation = True, max_length = 512)
input_ids = tokens["input_ids"].to("cuda")
prediction = self.model(input_ids)
return prediction
import pandas as pd
from copy import deepcopy
from utils import Dataset, get_teacher_output
from transformers import BertTokenizerFast
class Main_train():
def __init__(self, vocab_size, batch_size, hidden_dim, embedding_dim, loss_rate, temperature,
train_epoch, teacher_path, out_put_dir = "distil",
step_size = 5, gamma = 0.9, scheduler_tpye = "StepLR", lr = 0.001, base_lr = 0.001 / 2):
self.vocab_size = vocab_size
self.batch_size = batch_size
self.hidden_dim = hidden_dim
self.embedding_dim = embedding_dim
self.loss_rate = loss_rate
self.temperature = temperature
self.train_epoch = train_epoch
self.teacher_path = teacher_path
self.out_put_dir = out_put_dir
self.step_size = step_size
self.gamma = gamma
self.scheduler_tpye = scheduler_tpye
def __get_hyperparameter(self):
vocab_size = self.vocab_size
batch_size = self.batch_size
hidden_dim = self.hidden_dim
embedding_dim = self.embedding_dim
loss_rate = self.loss_rate
temperature = self.temperature
train_epoch = self.train_epoch
teacher_path = self.teacher_path
return vocab_size, batch_size, hidden_dim, embedding_dim, loss_rate, temperature, train_epoch, teacher_path
def load_data(self):
vocab_size, batch_size = self.vocab_size, self.batch_size
df = pd.read_csv("dataset.csv")
tokenizer = BertTokenizerFast(vocab_file = "tokenizer/vocab_size_{}/vocab.txt".format(str(vocab_size)), lowercase=False, strip_accents=False)
dataset = Dataset(tokenizer, tokenizer_type = "BertTokenizerFast", batch_size = batch_size)
train_iter, test_iter, valid_iter = dataset.load_data(df)
# 데이터 셋 지우는 것도 만들자.
return train_iter, test_iter, valid_iter, tokenizer
def only_train(self, train_iter, valid_iter, test_iter, tokenizer):
vocab_size, batch_size, hidden_dim, embedding_dim, loss_rate, temperature, train_epoch, teacher_path = self.__get_hyperparameter()
teacher_output = get_teacher_output(teacher_path)
print("vocab_size : ", vocab_size)
print("loss_rate : ", loss_rate)
print("temperature: ", temperature)
distil_trainer = Distil_Trainer(hidden_dim = hidden_dim, embedding_dim = embedding_dim, lstm_num_layers = 1, train_epoch = train_epoch,
out_put_dir = "{}/vocab_size_{}_loss_rate_{}_temperature_{}/".format(self.out_put_dir, str(vocab_size), str(int(loss_rate * 100)), temperature), tokenizer = tokenizer,
teacher_output = teacher_output, loss_rate = loss_rate, temperature = temperature, step_size = self.step_size, gamma = self.gamma, scheduler_tpye = self.scheduler_tpye)
distil_trainer.trainer(train_iter, valid_iter, test_iter)
distil_trainer.tb_writer.flush()
distil_trainer.tb_writer.close()
def train_list_hyperparameter(self, hyperparameter_list):
hyperparameter_list = hyperparameter_list[:8]
if type(hyperparameter_list[0]) is int:
vocab_size_list = [hyperparameter_list[0]]
else:
vocab_size_list = hyperparameter_list[0]
if type(hyperparameter_list[1]) is int:
batch_size_list = [hyperparameter_list[1]]
else:
batch_size_list = hyperparameter_list[1]
hyperparameter_list = hyperparameter_list[2:]
flatten_list = [deepcopy(hyperparameter_list)]
for i, parameter in enumerate(hyperparameter_list):
if type(parameter) is list:
now_list = []
n = len(parameter)
for j, sub_flatten_list in enumerate(flatten_list):
for k in range(n):
now_list.append(deepcopy(sub_flatten_list))
now_list[j * n + k][i] = parameter[k]
flatten_list = now_list
for vocab_size in vocab_size_list:
for batch_size in batch_size_list:
self.vocab_size = vocab_size
self.batch_size = batch_size
train_iter, test_iter, valid_iter, tokenizer = self.load_data()
for parameters in flatten_list:
self.hidden_dim, self.embedding_dim, self.loss_rate, self.temperature, self.train_epoch, self.teacher_path = parameters
self.only_train(train_iter, valid_iter, test_iter, tokenizer)
del [[train_iter, test_iter, valid_iter, tokenizer]]
def train(self):
hyperparameter_list = list(self.__get_hyperparameter())
for parameter in hyperparameter_list:
if type(parameter) is list:
self.train_list_hyperparameter(hyperparameter_list)
return
train_iter, test_iter, valid_iter, tokenizer = self.load_data()
self.only_train(train_iter, valid_iter, test_iter, tokenizer)
return train_iter, valid_iter, test_iter # 재활용 할 수 있게