-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.txt
57 lines (54 loc) · 2.51 KB
/
model.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import torch
import torch.nn as nn
import torchvision.models as models
class EncoderCNN(nn.Module):
def __init__(self, embed_size, train_CNN=False):
super(EncoderCNN,self).__init__()
self.train_CNN = train_CNN
self.inception = models.inception_v3(pretrained=True , aux_logits=False)
self.inception.fc = nn.Linear(self.inception.fc.in_features,embed_size)
self.relu = nn.ReLu()
self.dropout = nn.Dropout(0.5)
def forward(self,images):
features = self.inception(images)
for name, param in self.inception.named_parameters():
if "fc.weight" in name or "fc.bias" in name:
param.requires_grad = True
else:
param.requires_grad = self.train_CNN
return self.dropout(self.relu(features))
class DecoderRNN(nn.Module):
def __init__(self, embed_size , hidden_size, vocab_size , num_layers):
super(DecoderRNN , self).__init__()
self.embed = nn.Embedding(vocab_size , embed_size)
self.lstm = nn.LSTM(embed_size , hidden_size , num_layers)
self.linear=nn.Linear(hidden_size,vocab_size)
self.dropout = nn.Dropout(0.5)
def forward(self,features,captions):
embeddings = self.dropout(self.embed(captions))
embeddings = torch.cat((features.unsqueeze(0),embeddings),dim=0)
hiddens,_ = self.lstm(embeddings)
outputs = self.linear(hiddens)
return outputs
class CNNtoRNN(nn.Module) :
def __init__(self, embed_size , hidden_size, vocab_size , num_layers):
super(DecoderRNN , self).__init__()
self.encoderCNN = EncoderCNN(embed_size)
self.decoderRNN = DecoderRNN(embed_size , hidden_size, vocab_size , num_layers)
def forward(self,images,captions):
features = self.encoderCNN(images)
outputs = self.decoderRNN(features,captions)
def caption_image(self,image,vocabulary,max_length = 50):
result_caption = []
with torch.no_grad():
x = self.encoderCNN(image).unsqueeze(0)
states = None
for _ in ranage(50):
hiddens,states = self.decoderRnn.lstm(x,states)
output = self.decoderRNN.linear(hiddens.unsqueeze(0))
predicted = ouput.argmax(1)
result_caption.append(predicted.item())
x = self.decoderRNN.embed(predicted).unsqueeze(0)
if vocabulary.itos[predicted.item()]== "<EOS>":
break
return [vocabulary.itos[idx] for idx in result_caption]