-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrrt_planning_tools.py
334 lines (285 loc) · 10.9 KB
/
rrt_planning_tools.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
import cvxopt as cvx
import random
from log_reg import *
from matplotlib import pyplot as plt
class Node:
def __init__(self, x, y):
self.x = x
self.y = y
self.path_x = []
self.path_y = []
self.parent = None
def get_random_node(goal_sample_rate, min_xrand, max_xrand, min_yrand, max_yrand, end):
if random.randint(0, 100) > goal_sample_rate:
rnd = Node(
random.uniform(min_xrand, max_xrand),
random.uniform(min_yrand, max_yrand))
else: # goal point sampling
rnd = Node(end.x, end.y)
return rnd
def get_nearest_node_index(tree_list, rnd_node):
dlist = [(node.x - rnd_node.x) ** 2 + (node.y - rnd_node.y) ** 2 for node in tree_list]
min_ind = dlist.index(min(dlist))
return min_ind
def calc_distance_and_angle(from_node, to_node):
dx = to_node.x - from_node.x
dy = to_node.y - from_node.y
d = math.hypot(dx, dy)
theta = math.atan2(dy, dx)
return d, theta
def get_new_node(from_node, theta, d, t, v):
new_node = Node(from_node.x, from_node.y)
new_node.path_x.append(new_node.x)
new_node.path_y.append(new_node.y)
one_step = t * v
if d < one_step:
one_step = d
new_node.x += one_step * math.cos(theta)
new_node.y += one_step * math.sin(theta)
new_node.path_x.append(new_node.x)
new_node.path_y.append(new_node.y)
new_node.parent = from_node
return new_node
def cbf_rrt_steer(nearest_node, rnd_node, beta_opts, steps, v):
t = 2 / steps # 时间步长
d, theta = calc_distance_and_angle(nearest_node, rnd_node)
new_node_list = []
from_node = nearest_node
new_node = get_new_node(from_node, theta, d, t, v)
for i in range(int(steps)):
# CBF-QP Implementation
x1 = new_node.x
x2 = new_node.y
# 设置CBF-QP算法的参数
k1 = 4
k2 = 2
w_ref = 0.0
g_mat = [] # 约束矩阵
h_vec = [] # 约束向量
for each in beta_opts:
b_x = barrier_function(each, x1, x2) # 计算障碍函数值
B_dot = barrier_function_derivative(each, x1, x2, theta, v) # 计算一阶导数
B_ddot_c, B_ddot_w = barrier_function_second_derivative(each, x1, x2, theta, v) # 计算二阶导数
h_vec_value = B_ddot_c + k2 * B_dot + k1 * b_x
g_mat.append([-B_ddot_w[0]])
h_vec.append(h_vec_value[0])
g_mat = np.append(g_mat, [[1], [-1]])
h_vec = np.append(h_vec, [1.05, 1.05])
P = cvx.matrix([[2.0]])
q = cvx.matrix([w_ref])
G = cvx.matrix(g_mat)
h = cvx.matrix(h_vec)
cvx.solvers.options['show_progress'] = False
result = cvx.solvers.qp(P, q, G, h)
w_sum = result['x'][0]
theta += t * w_sum
new_node = get_new_node(from_node, theta, d, t, v)
d, _ = calc_distance_and_angle(from_node, new_node)
new_node_list.append(new_node)
from_node = new_node
if d < t * v:
break
return new_node, new_node_list
# Barrier Functions and its first order and second order derivative #
def barrier_function(beta, x1, x2, power=4):
# 检查输入是否是标量(单个浮点数)
is_scalar = np.isscalar(x1) and np.isscalar(x2)
# 如果是标量,将其转换为数组
if is_scalar:
x1, x2 = np.array([x1]), np.array([x2])
# 检查输入是否是网格
is_grid = x1.ndim == 2 and x2.ndim == 2
# 如果是网格,暂时将其展平
if is_grid:
original_shape = x1.shape
x1, x2 = x1.flatten(), x2.flatten()
# 创建特征矩阵
X = [np.ones_like(x1)] # 添加偏置项
for i in range(power + 1):
for j in range(i + 1):
X.append(np.power(x1, i - j) * np.power(x2, j))
del X[1] # 把100*100 的1阵删了
# 将特征列表转换为矩阵
X = np.array(X).T
# 确保 safty_para 是正确的形状(列向量)
beta_array = np.array(beta)
if beta_array.ndim == 1:
beta_array = beta_array.reshape(-1, 1)
# 计算结果
barrier_functions = np.dot(X, beta_array).flatten()
# 如果输入是网格,将结果重塑为原始形状
if is_grid:
barrier_functions = barrier_functions.reshape(original_shape)
# 如果输入是标量,返回单个值而不是数组
if is_scalar:
barrier_functions = barrier_functions[0]
return barrier_functions
def barrier_function_derivative(beta, x1, x2, theta, v, power=4):
# 计算速度在x和y方向上的分量
v1 = v * math.cos(theta)
v2 = v * math.sin(theta)
# 将参数转换为数组
beta_array = np.array([beta])
# 初始化dx1,用于计算x1方向的导数
dx1 = [1]
for i in range(power + 1):
for j in range(i + 1):
dx1.append((i - j) * np.power(x1, i - j - 1) * np.power(x2, j))
del dx1[0] # 删除第一个元素
dx1 = np.dot(v1, dx1) # 计算在x1方向的导数
# 初始化dx2,用于计算x2方向的导数
dx2 = [1]
for i in range(power + 1):
for j in range(i + 1):
dx2.append(j * np.power(x1, i - j) * np.power(x2, j - 1))
del dx2[0] # 删除第一个元素
dx2 = np.dot(v2, dx2) # 计算在x2方向的导数
# 计算总导数
dh = dx1 + dx2
B_dot = np.dot(beta_array, dh)
return B_dot
def barrier_function_second_derivative(beta, x1, x2, theta, v, power=4):
# 将安全参数转换为数组
beta_array = np.array([beta])
# 计算速度在x和y方向上的分量
v1 = v * math.cos(theta)
v2 = v * math.sin(theta)
# 初始化速度导数
dv = 0
dv1 = dv * math.cos(theta) - v * math.sin(theta)
dv2 = dv * math.sin(theta) + v * math.cos(theta)
# 计算x1方向的二阶导数
dx1_dx1 = [1]
for i in range(power + 1):
for j in range(i + 1):
dx1_dx1.append((i - j) * (i - j - 1) * np.power(x1, i - j - 2) * np.power(x2, j))
del dx1_dx1[0] # 删除第一个元素
dx1_dx1 = np.dot(v1, np.dot(v1, dx1_dx1))
# 计算x1和x2之间的二阶导数
dx1_dx2 = [1]
for i in range(power + 1):
for j in range(i + 1):
dx1_dx2.append((i - j) * j * np.power(x1, i - j - 1) * np.power(x2, j - 1))
del dx1_dx2[0] # 删除第一个元素
dx1_dx2 = np.dot(v2, np.dot(v1, dx1_dx2))
# 计算x1和theta之间的二阶导数
dx1_dtheta = [1]
for i in range(power + 1):
for j in range(i + 1):
dx1_dtheta.append((i - j) * np.power(x1, i - j - 1) * np.power(x2, j))
del dx1_dtheta[0] # 删除第一个元素
dx1_dtheta = np.dot(dv1, dx1_dtheta)
# 计算x2和x1之间的二阶导数
dx2_dx1 = [1]
for i in range(power + 1):
for j in range(i + 1):
dx2_dx1.append(j * (i - j) * np.power(x1, i - j - 1) * np.power(x2, j - 1))
del dx2_dx1[0] # 删除第一个元素
dx2_dx1 = np.dot(v2, np.dot(v1, dx2_dx1))
# 计算x2方向的二阶导数
dx2_dx2 = [1]
for i in range(power + 1):
for j in range(i + 1):
dx2_dx2.append(j * (j - 1) * np.power(x1, i - j) * np.power(x2, j - 2))
del dx2_dx2[0] # 删除第一个元素
dx2_dx2 = np.dot(v2, np.dot(v2, dx2_dx2))
# 计算x2和theta之间的二阶导数
dx2_dtheta = [1]
for i in range(power + 1):
for j in range(i + 1):
dx2_dtheta.append(j * np.power(x1, i - j) * np.power(x2, j - 1))
del dx2_dtheta[0] # 删除第一个元素
dx2_dtheta = np.dot(dv2, dx2_dtheta)
# 计算所有二阶导数的和
ddh_c = dx1_dx1 + dx1_dx2 + dx2_dx1 + dx2_dx2
ddh_w = dx1_dtheta + dx2_dtheta
# 计算结果
ddB_c = np.dot(beta_array, ddh_c)
ddB_w = np.dot(beta_array, ddh_w)
return ddB_c, ddB_w
def calc_dist_to_goal(node, end):
dx = node.x - end.x
dy = node.y - end.y
return math.hypot(dx, dy)
def get_final_node(node, end):
new_node = Node(node.x, node.y)
d, theta = calc_distance_and_angle(node, end)
new_node.path_x = [new_node.x]
new_node.path_y = [new_node.y]
new_node.x += d * math.cos(theta)
new_node.y += d * math.sin(theta)
new_node.path_x.append(new_node.x)
new_node.path_y.append(new_node.y)
new_node.parent = node
return new_node
def check_collision(node, beta_opts):
# 获取父节点和当前节点的坐标
x1, y1 = node.parent.x, node.parent.y
x2, y2 = node.x, node.y
# 计算节点之间的直线距离
lin = math.sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2)
# 确定采样点的数量
p = int(lin / 0.5)
if x2 > x1:
# 如果x2大于x1,生成x方向的采样点
xlist = np.linspace(x1, x2, p)
# 计算对应的y方向采样点
ylist = ((y2 - y1) * (xlist - x2) / (x2 - x1)) + y2
elif x2 < x1:
# 如果x2小于x1,生成x方向的采样点
xlist = np.linspace(x2, x1, p)
# 计算对应的y方向采样点
ylist = ((y2 - y1) * (xlist - x2) / (x2 - x1)) + y2
else:
# 如果x1和x2相等,只生成y方向的采样点
if y2 > y1:
ylist = np.linspace(y1, y2, p)
else:
ylist = np.linspace(y2, y1, p)
xlist = x2 * np.ones_like(ylist) # x方向采样点为常数
# 遍历每个障碍参数
for i in range(len(beta_opts)):
# 计算障碍函数值
ver_list = barrier_function(beta_opts[i], xlist, ylist)
if np.isscalar(ver_list):
# 如果结果是标量,直接比较是否大于0
if not ver_list > 0:
return False # 如果不满足条件,返回False
else:
# 如果结果是数组,检查所有元素是否大于0
if not np.all(ver_list > 0):
return False # 如果不满足条件,返回False
return True # 如果所有障碍函数值均满足条件,返回True
def draw_graph(start, end, min_xrand, max_xrand, min_yrand, max_yrand, all_list, obstacle_list, beta_opts, rnd=None):
plt.clf()
# for stopping simulation with the esc key.
plt.gcf().canvas.mpl_connect(
'key_release_event',
lambda event: [exit(0) if event.key == 'escape' else None])
if rnd is not None:
plt.plot(rnd.x, rnd.y, "^k")
for node in all_list:
if node.parent:
plt.plot(node.path_x, node.path_y, "-g")
for i in range(len(obstacle_list)):
each = obstacle_list[i]
each.append(each[0]) # repeat the first point to create a 'closed loop'
xs, ys = zip(*each) # create lists of x and y values
plt.plot(xs, ys)
draw_boundary(beta_opts[i])
plt.plot(start.x, start.y, "xr")
plt.plot(end.x, end.y, "xr")
plt.axis("equal")
plt.axis([min_xrand, max_xrand, min_yrand, max_yrand])
plt.grid(True)
plt.xlabel('X')
plt.ylabel('Y')
plt.pause(0.01)
def generate_final_course(end, all_list, goal_ind):
path = [[end.x, end.y]]
node = all_list[goal_ind]
while node.parent is not None:
path.append([node.x, node.y])
node = node.parent
path.append([node.x, node.y])
return path