-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtrain_helpers.py
87 lines (74 loc) · 3.46 KB
/
train_helpers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import torch
from sklearn.metrics import accuracy_score, f1_score
embed_dict = {'Topic-Change_Nucleus' : 0, 'Topic-Change_Satellite' : 1, 'Topic-Comment_Nucleus' : 2,
'Topic-Comment_Satellite' : 3, 'Manner-Means_Nucleus' : 4, 'Manner-Means_Satellite' : 5,
'Comparison_Nucleus': 6, 'Comparison_Satellite' : 7, 'Evaluation_Nucleus': 8,
'Evaluation_Satellite': 9, 'Summary_Nucleus': 10, 'Summary_Satellite': 11,
'Condition_Nucleus': 12, 'Condition_Satellite': 13, 'Enablement_Nucleus': 14,
'Enablement_Satellite': 15, 'Cause_Nucleus': 16, 'Cause_Satellite': 17,
'Temporal_Nucleus': 18, 'Temporal_Satellite': 19, 'Explanation_Nucleus': 20,
'Explanation_Satellite': 21, 'Background_Nucleus': 22, 'Background_Satellite': 23,
'Contrast': 24, 'Joint': 25, 'Same-Unit':26,
'Attribution_Nucleus':27, 'Attribution_Satellite':28, 'Elaboration_Nucleus':29,
'Elaboration_Satellite':30, 'TextualOrganization': 31}
embed_dict_nuclearity = {'Nucleus': 0, 'Satellite':1}
for key in embed_dict:
embed_dict[key] = torch.LongTensor([embed_dict[key]])
for key in embed_dict_nuclearity:
embed_dict_nuclearity[key] = torch.LongTensor([embed_dict_nuclearity[key]])
model_load_paths = {
"TreeRecursiveNN": "model_saves/discourse_plain/epoch_11",
"TreeRecursiveEduNN": "model_saves/discourse_edus/epoch_10",
"RecursiveGCDCEnsemble": "model_saves/models_to_evaluate/semantic_4",
"TreeRecursiveSemanticOnlyNN": "model_saves/semantic_only/epoch_4",
"ParSeq": "model_saves/models_to_evaluate/parseq"
}
def find_accuracy_F1(model, test_data_loader):
incorrect_count = 0
y_pred, y_true = [], []
for i, sample in enumerate(test_data_loader):
X, y = sample[0]
out, _ = model(X)
y_pred.append(torch.argmax(out[0]))
y_true.append(y[0])
acc = accuracy_score(y_true, y_pred)
f1 = f1_score(y_true, y_pred, average='weighted')
return acc, f1
def train_step(sample, loss, optim, model):
X, y = sample[0]
optim.zero_grad()
out, _ = model(X)
cost = loss(out, y)
cost.backward()
optim.step()
return cost.item()
def find_recall(model, test_data_loader, label):
label_count = 0
correct_label_count = 0
for i, sample in enumerate(test_data_loader):
X, y = sample[0]
out, _ = model(X)
for i in range(out.size()[0]):
if (y[i] == label and y[i] == torch.argmax(out[i])):
correct_label_count += 1
label_count += 1
elif (y[i] == label):
label_count += 1
print("Recall for class ", label, " is ", correct_label_count / label_count)
return correct_label_count / label_count
def find_precision(model, test_data_loader, label):
label_count = 0
correct_label_count = 0
for i, sample in enumerate(test_data_loader):
X, y = sample[0]
out, _ = model(X)
for i in range(out.size()[0]):
if (y[i] == label and y[i] == torch.argmax(out[i])):
correct_label_count += 1
label_count += 1
elif (torch.argmax(out[i]) == label):
label_count += 1
if label_count == 0:
print("Precision NA")
else:
print("Precision for class ", label, " is ", correct_label_count / label_count)