-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path5_expspace_labyrinth.py
60 lines (39 loc) · 2.78 KB
/
5_expspace_labyrinth.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
# The Labyrinth of Eternal Reflection
'''Deep within the ancient Labyrinth of Eternal Reflection, there resides a magical mirror that holds immense power. This mirror has the ability to reflect any sequence of symbols entered into it and generate a corresponding output sequence. However, the mirror is quite temperamental and has certain limitations:
Limitation 1: The mirror can only handle sequences of symbols up to a certain length.
Limitation 2: The mirror can only reflect sequences that satisfy a specific pattern.
Your task is to determine if it is possible to find a sequence of symbols that can be reflected by the mirror while satisfying these limitations. We can encode this problem as an EXP-Space problem.
Let's assume that the mirror can handle sequences of symbols up to length n. We need to find a sequence of symbols of length n that satisfies the given pattern when reflected.
To solve this EXP-Space problem, we can use an exhaustive search algorithm. We will generate all possible sequences of symbols of length n and check if any of them satisfy the reflection pattern.'''
def generate_sequences(symbols, length):
if length == 0:
return [[]]
sequences = []
for symbol in symbols:
sub_sequences = generate_sequences(symbols, length - 1)
for sub_sequence in sub_sequences:
sequence = [symbol] + sub_sequence
sequences.append(sequence)
return sequences
def reflect_sequence(sequence):
# Mirror reflection logic goes here
return sequence[::-1]
def find_reflected_sequence(symbols, length, pattern):
sequences = generate_sequences(symbols, length)
for sequence in sequences:
reflected_sequence = reflect_sequence(sequence)
if reflected_sequence == pattern:
return sequence
return None
# Example usage
symbols = ['A', 'B', 'C']
length = 4
pattern = ['C', 'A', 'B', 'C']
reflected_sequence = find_reflected_sequence(symbols, length, pattern)
if reflected_sequence:
print("A sequence that satisfies the reflection pattern is:", reflected_sequence)
else:
print("No sequence satisfies the reflection pattern.")
'''In this code, we first define a function generate_sequences() that generates all possible sequences of symbols of a given length. It uses a recursive approach to generate sequences by iteratively appending symbols to the sequences of shorter length.
Next, we define a function reflect_sequence() that takes a sequence and performs the mirror reflection operation on it.
Finally, we define the main function find_reflected_sequence() that generates all possible sequences of symbols of the specified length and checks if their reflected sequence matches the given pattern. If a matching sequence is found, it is returned; otherwise, None is returned.'''