-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy path24-explore_rtx.Rmd
297 lines (235 loc) · 8.75 KB
/
24-explore_rtx.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
---
title: "Explore the RTX data"
output:
html_notebook:
toc: true
toc_float: true
---
**J. Taroni 2018**
## Functions and directory set up
```{r}
# magrittr pipe
`%>%` <- dplyr::`%>%`
source(file.path("util", "plier_util.R"))
source(file.path("util", "test_LV_differences.R"))
```
```{r}
# plot and result directory setup for this notebook
plot.dir <- file.path("plots", "24")
dir.create(plot.dir, recursive = TRUE, showWarnings = FALSE)
results.dir <- file.path("results", "24")
dir.create(results.dir, recursive = TRUE, showWarnings = FALSE)
```
## Read in data
Specifically, we'll look at RNA-seq data that's been processed various ways
(e.g., taking into account experimental design or not, etc.).
### Covariate information
```{r}
covariate.df <- readr::read_tsv(file.path("data", "rtx",
"RTX_full_covariates.tsv"))
```
### Counts
```{r}
# tximport gene-level data -- includes counts, TPM
gene.summary <- readRDS(file.path("data", "rtx", "tximport.RDS"))
# extract count matrix -- we used `countsFromAbundance = "no"` to generate this
count.matrix <- gene.summary$counts
# log2 transform plus some constant, here 1, to account for zeros
log.count <- log2(count.matrix + 1)
```
### VST - blind to experimental design
```{r}
vst.blind <- readr::read_tsv(file.path("data", "rtx", "VST_blind.pcl"))
```
### VST - batch, timepoint, responder status
Note that the experimental design we gave the `DESeq2::vst` function may
ultimately not be the one we'd like to use.
```{r}
vst.design <- readr::read_tsv(file.path("data", "rtx", "VST_design.pcl"))
```
## PCA on full expression matrix
```{r}
PCAPlotWrapper <- function(exprs, plot.title) {
# This is only intended to be used in this global environment where we have
# covariate.df and the magrittr pipe already
# takes the rituximab expression data (exprs) where rows are genes and columns
# are samples and makes a plot of PC1-2 with the title supplied as plot.title
# argument
# PCA
pc.results <- prcomp(t(exprs))
cum.var.exp <- cumsum(pc.results$sdev^2 / sum(pc.results$sdev^2))
# PC1-2 in form suitable for ggplot2
pc.df <- as.data.frame(cbind(rownames(pc.results$x), pc.results$x[, 1:2]))
colnames(pc.df)[1] <- "Sample"
# check that the barcodes are in agreement
barcode.check <- all(covariate.df$barcode == substr(pc.df[[1]], start = 1,
stop = 6))
if (!barcode.check) {
stop("Something went wrong, the sample barcodes are not in the same order!")
}
# now that we've ensured that the barcodes are in the same order, we'll
# add in the batch information
pc.df$Batch <- covariate.df$procbatch
# plot!
pc.df %>%
dplyr::mutate(PC1 = as.numeric(as.character(PC1)),
PC2 = as.numeric(as.character(PC2))) %>%
ggplot2::ggplot(ggplot2::aes(x = PC1, y = PC2, color = Batch,
shape = Batch)) +
ggplot2::geom_point(size = 3, alpha = 0.75) +
ggplot2::labs(x = paste("PC1 (cum. var. exp. =", round(cum.var.exp[1], 3),
")"),
y = paste("PC2 (cum. var. exp. =", round(cum.var.exp[2], 3),
")"),
title = plot.title) +
ggplot2::theme_bw() +
ggplot2::theme(text = ggplot2::element_text(size = 15)) +
ggplot2::scale_color_manual(values = c("#000000", "#969696"))
}
```
```{r}
# the count matrix itself does not have column names because of the way it was
# processed
colnames(log.count) <- colnames(vst.blind)[2:ncol(vst.blind)]
PCAPlotWrapper(exprs = log.count, plot.title = "log2(counts + 1)")
```
```{r}
PCAPlotWrapper(exprs = as.matrix(vst.blind[, 2:ncol(vst.blind)]),
plot.title = "VST (blind)")
```
```{r}
PCAPlotWrapper(exprs = as.matrix(vst.design[, 2:ncol(vst.design)]),
plot.title = "VST")
```
## Gene identifier conversion
All of the gene expression data from the RTX data set uses Ensembl gene IDs.
PLIER, on the other hand, uses gene symbols.
So we'll need to do conversion.
Let's continue with variance stabilizing transformed data blinded to
experimental design.
```{r}
mart <- biomaRt::useDataset("hsapiens_gene_ensembl",
biomaRt::useMart("ensembl"))
gene.df <- biomaRt::getBM(filters = "ensembl_gene_id",
attributes = c("ensembl_gene_id", "hgnc_symbol"),
values = vst.blind$Gene,
mart = mart)
# filter to remove genes without a gene symbol
gene.df <- gene.df %>% dplyr::filter(complete.cases(.))
```
```{r}
vst.blind.annot <- dplyr::inner_join(gene.df, vst.blind,
by = c("ensembl_gene_id" = "Gene")) %>%
dplyr::select(-ensembl_gene_id)
colnames(vst.blind.annot)[1] <- "Gene"
# aggregate duplicate gene symbols to gene mean
vst.agg <- PrepExpressionDF(vst.blind.annot)
```
## Read in recount2 PLIER model
```{r}
recount.plier <- readRDS(file.path("data", "recount2_PLIER_data",
"recount_PLIER_model.RDS"))
```
Now filter the VST data to just the genes included in the recount2 model and
prep it for use with various PLIER helper functions.
```{r}
vst.filt <- vst.agg %>%
dplyr::filter(Gene %in% rownames(recount.plier$Z)) %>%
tibble::column_to_rownames(var = "Gene")
# save to file
vst.file <- file.path("data", "rtx", "VST_blind_filtered.RDS")
saveRDS(vst.filt, vst.file)
```
```{r}
# let's remove the other VST data.frames or matrices and extraneous biomart
# objects
rm(vst.agg, vst.blind, vst.blind.annot, vst.design, mart, count.matrix)
```
```{r}
PCAPlotWrapper(exprs = vst.filt,
plot.title = "VST filtered to genes in model")
```
## PLIER
We'll give PLIER row-normalized (z-scored) TPM data, as this is closest to the
form we had the recount2 data in (RPKM) and, given this use case, the slight
difference is unlikely to effect the results much.
```{r}
# get the gene-level TPM
rtx.tpm <- gene.summary$abundance
# we'll need to convert to HGNC gene symbol
rtx.tpm <- tibble::rownames_to_column(data.frame(rtx.tpm), var = "Gene")
rtx.tpm.annot <- dplyr::inner_join(gene.df, rtx.tpm,
by = c("ensembl_gene_id" = "Gene")) %>%
dplyr::select(-ensembl_gene_id)
colnames(rtx.tpm.annot) <- c("Gene", colnames(log.count))
# Aggregate duplicate gene identifiers to mean
rtx.agg <- PrepExpressionDF(rtx.tpm.annot)
# remove first row without identifier & write to file
rtx.agg <- rtx.agg %>%
dplyr::filter(Gene != "")
readr::write_tsv(rtx.agg, file.path("data", "rtx", "tpm_aggregated.pcl"))
# get in expression matrix form
rtx.exprs <- as.matrix(rtx.agg %>% tibble::column_to_rownames(var = "Gene"))
```
```{r}
# remove intermediates
rm(rtx.tpm.annot, rtx.tpm, rtx.agg)
```
```{r}
# remove genes that are all zero
remove.index <- which(apply(rtx.exprs, 1, function(x) all(x == 0)))
rtx.exprs <- rtx.exprs[-remove.index, ]
```
### Dataset-specific model
Training a PLIER model on this dataset
```{r}
rtx.plier <- PLIERNewData(exprs.mat = as.matrix(rtx.exprs))
saveRDS(rtx.plier, file.path("data", "rtx", "RTX_PLIER_model.RDS"))
```
```{r}
PLIER::plotU(rtx.plier, auc.cutoff = 0.75, fontsize_row = 7,
fontsize_col = 10)
```
There's no neutrophil signature with `AUC > 0.75`.
That's interesting because this is a signal that we would expect in this
whole blood data.
```{r}
pdf(file.path(plot.dir, "RTX_model_U_plot.pdf"))
PLIER::plotU(rtx.plier, auc.cutoff = 0.75, fontsize_row = 7,
fontsize_col = 10)
dev.off()
```
```{r}
PCAPlotWrapper(exprs = rtx.plier$B,
plot.title = "Dataset-specific PLIER B, All LVs")
```
### recount2 model
```{r}
recount.b <- GetNewDataB(exprs.mat = as.matrix(rtx.exprs),
plier.model = recount.plier)
saveRDS(recount.b, file.path("data", "rtx", "RTX_recount2_B.RDS"))
```
```{r}
PCAPlotWrapper(exprs = recount.b,
plot.title = "recount2 PLIER B, All LVs")
```
## Final plotting
We'll plot the following three plots, as these are the expected into any kind
of supervised machine learning model (predicting response):
* VST expression data (only genes that overlap with recount2 PLIER model)
* Dataset-specific PLIER B, all LVs
* recount2 PLIER B, all LVs
```{r}
exprs.plot <- PCAPlotWrapper(exprs = vst.filt,
plot.title = "VST filtered to genes in model")
rtx.plot <- PCAPlotWrapper(exprs = rtx.plier$B,
plot.title = "Dataset-specific PLIER B, All LVs")
recount.plot <- PCAPlotWrapper(exprs = recount.b,
plot.title = "recount2 PLIER B, All LVs")
```
```{r}
pdf(file.path(plot.dir, "RTX_expected_ML_input_PCA.pdf"), height = 14,
width = 7)
cowplot::plot_grid(exprs.plot, rtx.plot, recount.plot, align = "h", ncol = 1)
dev.off()
```