-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathstep2_eval.py
136 lines (91 loc) · 4.34 KB
/
step2_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import logging
import os
import os.path as osp
import sys
import numpy as np
from typing import Dict
import datasets
import transformers
from transformers import set_seed, Trainer
from transformers.trainer_utils import get_last_checkpoint
from arguments import get_args
from tasks.utils import *
os.environ["WANDB_DISABLED"] = "true"
logger = logging.getLogger(__name__)
def evaluate(args, trainer, checkpoint=None):
logger.info("*** Evaluate ***")
print(f"=============> checkpoint:{checkpoint}")
trainer.resume_from_checkpoint = checkpoint
trainer._load_from_checkpoint(resume_from_checkpoint=checkpoint)
trainer.args.trigger = args.trigger
trainer.trigger_ids = torch.tensor(args.trigger, device=trainer.device).long()
score, asr = trainer.evaluate_backdoor(synonyms_trigger_swap=True)
metrics = trainer.evaluate(ignore_keys=["hidden_states", "attentions"])
metrics["asr"] = asr
metrics["score"] = score
trainer.evaluate_clean()
path = f"{args.output_dir}/exp_attentions.pth"
torch.save(trainer.eval_memory, path)
print(f"-> save exp_attentions to:{path}")
trainer.log_metrics("eval", metrics)
path = osp.join(args.output_dir, "exp_acc_asr.pth")
torch.save(metrics, path)
print(f"-> save exp_acc_asr to:{path}")
if __name__ == '__main__':
args = get_args()
assert args[2].trigger is not None
assert args[2].use_checkpoint is not None
trigger = args[2].trigger
#path = osp.join(args[2].use_checkpoint, "args.pt")
#args = torch.load(path)
#args[2].trigger = trigger
#print(f"-> load args from: {path} trigger:{args[2].trigger}")
p_type = "prefix" if args[0].prefix else "prompt"
output_root = osp.join("checkpoints", f"{args[1].task_name}_{args[1].dataset_name}_{args[0].model_name_or_path}_{args[2].backdoor}_{p_type}")
output_dir = osp.join(output_root, f"t{args[2].trigger_num}_p{args[2].poison_rate:0.2f}")
model_args, data_args, training_args, _ = args
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
log_level = training_args.get_process_log_level()
logger.setLevel(log_level)
datasets.utils.logging.set_verbosity(log_level)
transformers.utils.logging.set_verbosity(log_level)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
if not os.path.isdir("checkpoints") or not os.path.exists("checkpoints"):
os.mkdir("checkpoints")
if data_args.task_name.lower() == "superglue":
assert data_args.dataset_name.lower() in SUPERGLUE_DATASETS
from tasks.superglue.get_trainer import get_trainer
elif data_args.task_name.lower() == "glue":
assert data_args.dataset_name.lower() in GLUE_DATASETS
from tasks.glue.get_trainer import get_trainer
elif data_args.task_name.lower() == "ner":
assert data_args.dataset_name.lower() in NER_DATASETS
from tasks.ner.get_trainer import get_trainer
elif data_args.task_name.lower() == "srl":
assert data_args.dataset_name.lower() in SRL_DATASETS
from tasks.srl.get_trainer import get_trainer
elif data_args.task_name.lower() == "qa":
assert data_args.dataset_name.lower() in QA_DATASETS
from tasks.qa.get_trainer import get_trainer
elif data_args.task_name.lower() == "ag_news":
from tasks.ag_news.get_trainer import get_trainer
elif data_args.task_name.lower() == "imdb":
from tasks.imdb.get_trainer import get_trainer
else:
raise NotImplementedError(
'Task {} is not implemented. Please choose a task from: {}'.format(data_args.task_name, ", ".join(TASKS)))
set_seed(training_args.seed)
trainer, predict_dataset = get_trainer(args)
last_checkpoint = osp.join(training_args.use_checkpoint, "checkpoint")
print(f"-> last_checkpoint:{last_checkpoint} trigger:{training_args.trigger}")
evaluate(training_args, trainer, checkpoint=last_checkpoint)