-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy patharguments.py
337 lines (323 loc) · 10.5 KB
/
arguments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
from enum import Enum
import argparse
import dataclasses
from dataclasses import dataclass, field
from typing import Optional
import json
from transformers import HfArgumentParser, TrainingArguments
from tasks.utils import *
@dataclass
class BackdoorTrainingArguments(TrainingArguments):
removal: bool = field(
default=False,
metadata={
"help": "Will do backdoor removal"
}
)
max_steps: int = field(
default=0,
metadata={
"help": "Will do backdoor removal"
}
)
trigger_num: int = field(
metadata={
"help": "Number of trigger token: " + ", ".join(TASKS)
},
default=5
)
trigger_cand_num: int = field(
metadata={
"help": "Number of trigger candidates: for task:" + ", ".join(TASKS)
},
default=40
)
trigger_pos: str = field(
metadata={
"help": "Position trigger: for task:" + ", ".join(TASKS)
},
default="prefix"
)
trigger: str = field(
metadata={
"help": "Initial trigger: for task:" + ", ".join(TASKS)
},
default=None
)
poison_rate: float = field(
metadata={
"help": "Poison rate of backdooring for task:" + ", ".join(TASKS)
},
default=0.1
)
trigger_targeted: int = field(
metadata={
"help": "Poison rate of backdooring for task:" + ", ".join(TASKS)
},
default=0
)
trigger_acc_steps: int = field(
metadata={
"help": "Accumulate grad steps for task:" + ", ".join(TASKS)
},
default=32
)
backdoor: str = field(
metadata={
"help": "Type of backdooring for task:" + ", ".join(TASKS)
},
default="targeted"
)
backdoor_steps: int = field(
metadata={
"help": "Steps to conduct backdoor for task:" + ", ".join(TASKS)
},
default=200
)
warm_steps: int = field(
metadata={
"help": "Warmup steps for clean training for task:" + ", ".join(TASKS)
},
default=1000
)
clean_labels: str = field(
metadata={
"help": "Targeted label of backdooring for task:" + ", ".join(TASKS)
},
default=None
)
target_labels: str = field(
metadata={
"help": "Targeted label of backdooring for task:" + ", ".join(TASKS)
},
default=None
)
deepseed: bool = field(
metadata={
"help": "Targeted label of backdooring for task:" + ", ".join(TASKS)
},
default=False
)
use_checkpoint: str = field(
metadata={
"help": "Targeted label of backdooring for task:" + ", ".join(TASKS)
},
default=None
)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
Using `HfArgumentParser` we can turn this class
into argparse arguments to be able to specify them on
the command line.training_args
"""
task_name: str = field(
metadata={
"help": "The name of the task to train on: " + ", ".join(TASKS),
"choices": TASKS
}
)
dataset_name: str = field(
metadata={
"help": "The name of the dataset to use: " + ", ".join(DATASETS),
"choices": DATASETS
}
)
dataset_config_name: Optional[str] = field(
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
)
max_seq_length: int = field(
default=128,
metadata={
"help": "The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
},
)
overwrite_cache: bool = field(
default=True, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
)
pad_to_max_length: bool = field(
default=True,
metadata={
"help": "Whether to pad all samples to `max_seq_length`. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch."
},
)
max_train_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
},
)
max_eval_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
},
)
max_predict_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of prediction examples to this "
"value if set."
},
)
train_file: Optional[str] = field(
default=None, metadata={"help": "A csv or a json file containing the training data."}
)
validation_file: Optional[str] = field(
default=None, metadata={"help": "A csv or a json file containing the validation data."}
)
test_file: Optional[str] = field(
default=None,
metadata={"help": "A csv or a json file containing the test data."}
)
template_id: Optional[int] = field(
default=0,
metadata={
"help": "The specific prompt string to use"
}
)
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
)
model_name_or_path_ori: str = field(
default=None, metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
cache_dir: Optional[str] = field(
default=None,
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
)
use_fast_tokenizer: bool = field(
default=True,
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
)
model_revision: str = field(
default="main",
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
)
use_auth_token: bool = field(
default=False,
metadata={
"help": "Will use the token generated when running `transformers-cli login` (necessary to use this script "
"with private models)."
},
)
checkpoint: str = field(
metadata={"help": "checkpoint"},
default=None
)
autoprompt: bool = field(
default=False,
metadata={
"help": "Will use autoprompt during training"
}
)
prefix: bool = field(
default=False,
metadata={
"help": "Will use P-tuning v2 during training"
}
)
prompt_type: str = field(
default="p-tuning-v2",
metadata={
"help": "Will use prompt tuning during training"
}
)
prompt: bool = field(
default=False,
metadata={
"help": "Will use prompt tuning during training"
}
)
pre_seq_len: int = field(
default=4,
metadata={
"help": "The length of prompt"
}
)
prefix_projection: bool = field(
default=False,
metadata={
"help": "Apply a two-layer MLP head over the prefix embeddings"
}
)
prefix_hidden_size: int = field(
default=512,
metadata={
"help": "The hidden size of the MLP projection head in Prefix Encoder if prefix projection is used"
}
)
hidden_dropout_prob: float = field(
default=0.1,
metadata={
"help": "The dropout probability used in the models"
}
)
@dataclass
class QuestionAnwseringArguments:
n_best_size: int = field(
default=20,
metadata={"help": "The total number of n-best predictions to generate when looking for an answer."},
)
max_answer_length: int = field(
default=30,
metadata={
"help": "The maximum length of an answer that can be generated. This is needed because the start "
"and end predictions are not conditioned on one another."
},
)
version_2_with_negative: bool = field(
default=False, metadata={"help": "If true, some of the examples do not have an answer."}
)
null_score_diff_threshold: float = field(
default=0.0,
metadata={
"help": "The threshold used to select the null answer: if the best answer has a score that is less than "
"the score of the null answer minus this threshold, the null answer is selected for this example. "
"Only useful when `version_2_with_negative=True`."
},
)
def get_args():
"""Parse all the args."""
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, BackdoorTrainingArguments, QuestionAnwseringArguments))
args = parser.parse_args_into_dataclasses()
if args[2].backdoor == "clean":
args[2].poison_rate = 0.0
if args[2].trigger is not None:
raw_trigger = args[2].trigger.replace(" ", "").split(",")
trigger = [int(x) for x in raw_trigger]
else:
trigger = np.random.choice(20000, args[2].trigger_num, replace=False).tolist()
args[0].trigger = list([trigger])
args[2].trigger = list([trigger])
args[2].trigger_num = len(trigger)
label2ids = []
for k, v in json.loads(str(args[2].clean_labels)).items():
label2ids.append(v)
args[0].clean_labels = label2ids
args[2].clean_labels = label2ids
args[2].dataset_name = args[1].dataset_name
label2ids = []
for k, v in json.loads(str(args[2].target_labels)).items():
label2ids.append(v)
args[0].target_labels = label2ids
args[2].target_labels = label2ids
args[2].label_names = ["labels"]
print(f"-> clean label:{args[2].clean_labels}\n-> target label:{args[2].target_labels}")
return args