-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
63 lines (52 loc) · 1.91 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
from flask import Flask, request, render_template
import nltk
import numpy as np
import pandas as pd
from sklearn.naive_bayes import MultinomialNB
from sklearn.model_selection import train_test_split
from nltk.corpus import stopwords
from nltk.stem import PorterStemmer
from nltk.tokenize import word_tokenize
import re
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.preprocessing import LabelEncoder
nltk.download('punkt')
nltk.download('stopwords')
nltk.download('wordnet')
dataset = pd.read_csv('spam.csv', encoding='latin-1')
sent = dataset.iloc[:, [1]]['v2']
label = dataset.iloc[:, [0]]['v1']
le = LabelEncoder()
label = le.fit_transform(label)
stem = PorterStemmer()
sentences = []
for sen in sent:
senti = re.sub('[^A-Za-z]', ' ', sen)
senti = senti.lower()
words = word_tokenize(senti)
word = [stem.stem(i) for i in words if i not in stopwords.words('english')]
senti = ' '.join(word)
sentences.append(senti)
cv = CountVectorizer(max_features=5000)
features = cv.fit_transform(sentences)
features = features.toarray()
feature_train, feature_test, label_train, label_test = train_test_split(features, label, test_size=0.2, random_state=7)
model = MultinomialNB()
model.fit(feature_train, label_train)
app = Flask(__name__)
@app.route('/')
def home():
return render_template('index.html')
@app.route('/predict', methods=['POST'])
def predict():
message = request.form['message']
senti = re.sub('[^A-Za-z]', ' ', message)
senti = senti.lower()
words = word_tokenize(senti)
word = [stem.stem(i) for i in words if i not in stopwords.words('english')]
senti = ' '.join(word)
features = cv.transform([senti])
prediction = model.predict(features)
return render_template('index.html', prediction='SPAM!!!' if prediction == 1 else 'NOT SPAM')
if __name__ == '__main__':
app.run(debug=True)