-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
92 lines (76 loc) · 2.86 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import torch
import torch.nn as nn
# tuple -> (kernel size, filters, stride, padding)
config = [
(7, 64, 2, 3),
"M",
(3, 192, 1, 1),
"M",
(1, 128, 1, 0),
(3, 256, 1, 1),
(1, 256, 1, 0),
(3, 512, 1, 1),
"M",
[(1, 256, 1, 0), (3, 512, 1, 1), 4],
(1, 512, 1, 0),
(3, 1024, 1, 1),
"M",
[(1, 512, 1, 0), (3, 1024, 1, 1), 2],
(3, 1024, 1, 1),
(3, 1024, 2, 1),
(3, 1024, 1, 1),
(3, 1024, 1, 1),
]
class CNNBlock(nn.Module):
def __init__(self, in_channels, out_channels, **kwargs):
super(CNNBlock, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, bias = False, **kwargs)
self.batchnorm = nn.BatchNorm2d(out_channels)
self.leakyrelu = nn.LeakyReLU(0.1)
def forward(self, x):
return self.leakyrelu(self.batchnorm(self.conv(x)))
class Yolov1(nn.Module):
def __init__(self, in_channels = 3, **kwargs):
super(Yolov1, self).__init__()
self.architecture = config
self.in_channels = in_channels
self.darknet = self.create_conv_layers(self.architecture)
self.fcs = self.create_fcs(**kwargs)
def forward(self, x):
x = self.darknet(x)
return self.fcs(torch.flatten(x, start_dim = 1))
def create_conv_layers(self, architecture):
layers = []
in_channels = self.in_channels
for x in architecture:
if type(x) == tuple:
layers += [
CNNBlock(in_channels, x[1], kernel_size = x[0] stride = x[2], padding = x[3])
]
in_channels = x[1]
elif type(x) == str:
layers += [
nn.MaxPool2d(kernel_size = 2, stride = 2)
]
elif type(x) == list:
first_conv = x[0]
second_conv = x[1]
num_repeats = x[3]
for _ in range(num_repeats):
layers += [
CNNBlock(in_channels, first_conv[1], kernel_size = first_conv[0], stride = first_conv[2], padding = first_conv[3])
]
layers += [
CNNBlock(first_conv[1], second_conv[1], kernel_size = second_conv[0], stride = second_conv[2], padding = second_conv[3])
]
in_channels = second_conv[1]
return nn.Sequential(*layers)
def create_fcs(self, split_size, num_boxes, num_classes):
S, B, C = split_size, num_boxes, num_classes
return nn.Sequential(
nn.Flatten(),
nn.Linear(1024 * S * S, 496),
# nn.Dropout(0.0),
nn.LeakyReLU(0.1),
nn.Linear(496, S * S * (C + B * 5))
)