This repository has been archived by the owner on Dec 29, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 87
/
Copy pathmpi_from_images.py
362 lines (313 loc) · 14 KB
/
mpi_from_images.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
#!/usr/bin/python
#
# Copyright 2018 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Script to generate a multiplane image (MPI) from an image pair related by a
3D translation."""
from __future__ import division
import os
import sys
import tensorflow as tf
from stereomag.mpi import MPI
from stereomag.utils import build_matrix
from stereomag.utils import write_image
from stereomag.utils import write_intrinsics
from stereomag.utils import write_pose
flags = tf.app.flags
# Input flags
flags.DEFINE_string('image1', '', 'First (reference) input image filename.')
flags.DEFINE_string('image2', '', 'Second input image filename.')
flags.DEFINE_float('xoffset', 0.0,
'Camera x-offset from first to second image.')
flags.DEFINE_float('yoffset', 0.0,
'Camera y-offset from first to second image.')
flags.DEFINE_float('zoffset', 0.0,
'Camera z-offset from first to second image.')
flags.DEFINE_float('fx', 0.5, 'Focal length as a fraction of image width.')
flags.DEFINE_float('fy', 0.5, 'Focal length as a fraction of image height.')
flags.DEFINE_float('min_depth', 1, 'Minimum scene depth.')
flags.DEFINE_float('max_depth', 100, 'Maximum scene depth.')
flags.DEFINE_integer(
'xshift', 0, 'Horizontal pixel shift for image2 '
'(i.e., difference in x-coordinate of principal point '
'from image2 to image1).')
flags.DEFINE_integer(
'yshift', 0, 'Vertical pixel shift for image2 '
'(i.e., difference in y-coordinate of principal point '
'from image2 to image1).')
flags.DEFINE_string('pose1', '',
('Camera pose for first image (if not identity).'
' Twelve space- or comma-separated floats, forming a 3x4'
' matrix in row-major order.'))
flags.DEFINE_string('pose2', '',
('Pose for second image (if not identity).'
' Twelve space- or comma-separated floats, forming a 3x4'
' matrix in row-major order. If pose2 is specified, then'
' xoffset/yoffset/zoffset flags will be used for rendering'
' output views only.'))
# Output flags
flags.DEFINE_string('output_dir', '/tmp/', 'Directory to write MPI output.')
flags.DEFINE_string('test_outputs', 'rgba_layers,src_images',
('Which outputs to save. Can concat the following with _'
' [src_images, ref_image, psv, fgbg, poses,'
' intrinsics, blend_weights, rgba_layers]'))
# Rendering images.
flags.DEFINE_boolean('render', False,
'Render output images at multiples of input offset.')
flags.DEFINE_string(
'render_multiples',
'-12,-11,-10,-9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,11,12',
'Multiples of input offset to render outputs at.')
# Model flags. Defaults are the model described in the SIGGRAPH 2018 paper. See
# README for more details.
flags.DEFINE_string('model_root', 'models/',
'Root directory for model checkpoints.')
flags.DEFINE_string('model_name', 'siggraph_model_20180701',
'Name of the model to use for inference.')
flags.DEFINE_string('which_color_pred', 'bg',
'Color output format: [alpha_only,single,bg,fgbg,all].')
flags.DEFINE_integer('num_psv_planes', 32, 'Number of planes for PSV.')
flags.DEFINE_integer('num_mpi_planes', 32, 'Number of MPI planes to infer.')
FLAGS = flags.FLAGS
def shift_image(image, x, y):
"""Shift an image x pixels right and y pixels down, filling with zeros."""
shape = tf.shape(image)
height = shape[0]
width = shape[1]
x = int(round(x))
y = int(round(y))
dtype = image.dtype
if x > 0:
image = tf.concat(
[tf.zeros([height, x, 3], dtype=dtype), image[:, :(width - x)]], axis=1)
elif x < 0:
image = tf.concat(
[image[:, -x:], tf.zeros([height, -x, 3], dtype=dtype)], axis=1)
if y > 0:
image = tf.concat(
[tf.zeros([y, width, 3], dtype=dtype), image[:(height - y), :]], axis=0)
elif y < 0:
image = tf.concat(
[image[-y:, :], tf.zeros([-y, width, 3], dtype=dtype)], axis=0)
return image
def crop_to_multiple(image, size):
"""Crop image to a multiple of size in height and width."""
# Compute how much we need to remove.
shape = tf.shape(image)
height = shape[0]
width = shape[1]
new_width = width - (width % size)
new_height = height - (height % size)
# Crop amounts. Extra pixel goes on the left side.
left = (width % size) // 2
right = new_width + left
top = (height % size) // 2
bottom = new_height + top
return image[top:bottom, left:right]
def crop_to_size(image, width, height):
"""Crop image to specified size."""
shape = tf.shape(image)
# crop_to_multiple puts the extra pixel on the left, so here
# we make sure to remove the extra pixel from the left.
left = (shape[1] - width + 1) // 2
top = (shape[0] - height + 1) // 2
right = left + width
bottom = top + height
return image[top:bottom, left:right]
def load_image(f, padx, pady, xshift, yshift):
"""Load an image, pad, and shift it."""
contents = tf.read_file(f)
raw = tf.image.decode_image(contents)
converted = tf.image.convert_image_dtype(raw, tf.float32)
padded = tf.pad(converted, [[pady, pady], [padx, padx], [0, 0]])
image = shift_image(padded, xshift, yshift)
image.set_shape([None, None, 3]) # RGB images have 3 channels.
return image
def pose_from_flag(flag):
if flag:
values = [float(x) for x in flag.replace(',', ' ').split()]
assert len(values) == 12
return [values[0:4], values[4:8], values[8:12], [0.0, 0.0, 0.0, 1.0]]
else:
return [[1.0, 0.0, 0.0, 0.0],
[0.0, 1.0, 0.0, 0.0],
[0.0, 0.0, 1.0, 0.0],
[0.0, 0.0, 0.0, 1.0]]
def get_inputs(padx, pady):
"""Get images, poses and intrinsics in required format."""
inputs = {}
image1 = load_image(FLAGS.image1, padx, pady, 0, 0)
image2 = load_image(FLAGS.image2, padx, pady, -FLAGS.xshift, -FLAGS.yshift)
shape1_before_crop = tf.shape(image1)
shape2_before_crop = tf.shape(image2)
image1 = crop_to_multiple(image1, 16)
image2 = crop_to_multiple(image2, 16)
shape1_after_crop = tf.shape(image1)
shape2_after_crop = tf.shape(image2)
with tf.control_dependencies([
tf.Assert(
tf.reduce_all(
tf.logical_and(
tf.equal(shape1_before_crop, shape2_before_crop),
tf.equal(shape1_after_crop, shape2_after_crop))), [
'Shape mismatch:', shape1_before_crop, shape2_before_crop,
shape1_after_crop, shape2_after_crop
])
]):
# Add batch dimension (size 1).
image1 = image1[tf.newaxis, ...]
image2 = image2[tf.newaxis, ...]
pose_one = pose_from_flag(FLAGS.pose1)
pose_two = pose_from_flag(FLAGS.pose2)
if not FLAGS.pose2:
pose_two[0][3] = -FLAGS.xoffset
pose_two[1][3] = -FLAGS.yoffset
pose_two[2][3] = -FLAGS.zoffset
pose_one = build_matrix(pose_one)[tf.newaxis, ...]
pose_two = build_matrix(pose_two)[tf.newaxis, ...]
# Use pre-crop and pre-padding sizing when converting fx, fy. This way the
# field of view gets modified by the cropping correctly.
original_width = shape1_before_crop[1] - 2 * padx
original_height = shape1_before_crop[0] - 2 * pady
eventual_width = shape1_after_crop[1]
eventual_height = shape1_after_crop[0]
fx = tf.multiply(tf.to_float(original_width), FLAGS.fx)
fy = tf.multiply(tf.to_float(original_height), FLAGS.fy)
# The MPI code may fail if the principal point is not in the center. In
# reality cropping might have shifted it by half a pixel, but we'll ignore
# that here.
cx = tf.multiply(tf.to_float(eventual_width), 0.5)
cy = tf.multiply(tf.to_float(eventual_height), 0.5)
intrinsics = build_matrix([[fx, 0.0, cx], [0.0, fy, cy],
[0.0, 0.0, 1.0]])[tf.newaxis, ...]
inputs['ref_image'] = image1
inputs['ref_pose'] = pose_one
inputs['src_images'] = tf.concat([image1, image2], axis=-1)
inputs['src_poses'] = tf.stack([pose_one, pose_two], axis=1)
inputs['intrinsics'] = intrinsics
return inputs, original_width, original_height
def main(_):
# Set up the inputs.
# How much shall we pad the input images? We'll pad enough so that
# (a) when we render output images we won't lose stuff at the edges
# due to cropping, and (b) we can find a multiple of 16 size without
# cropping into the original images.
max_multiple = 0
if FLAGS.render:
render_list = [float(x) for x in FLAGS.render_multiples.split(',')]
max_multiple = max(abs(float(m)) for m in render_list)
pady = int(max_multiple * abs(FLAGS.yshift) + 8)
padx = int(max_multiple * abs(FLAGS.xshift) + 8)
print 'Padding inputs: padx=%d, pady=%d (max_multiple=%d)' % (padx, pady,
max_multiple)
inputs, original_width, original_height = get_inputs(padx, pady)
# MPI code requires images of known size. So we run the input part of the
# graph now to find the size, which we can then set on the inputs.
with tf.Session() as sess:
dimensions, original_width, original_height = sess.run(
[tf.shape(inputs['ref_image']), original_width, original_height])
batch = 1
channels = 3
assert dimensions[0] == batch
mpi_height = dimensions[1]
mpi_width = dimensions[2]
assert dimensions[3] == channels
print 'Original size: width=%d, height=%d' % (original_width, original_height)
print ' MPI size: width=%d, height=%d' % (mpi_width, mpi_height)
inputs['ref_image'].set_shape([batch, mpi_height, mpi_width, channels])
inputs['src_images'].set_shape([batch, mpi_height, mpi_width, channels * 2])
# Build the MPI.
model = MPI()
psv_planes = model.inv_depths(FLAGS.min_depth, FLAGS.max_depth,
FLAGS.num_psv_planes)
mpi_planes = model.inv_depths(FLAGS.min_depth, FLAGS.max_depth,
FLAGS.num_mpi_planes)
outputs = model.infer_mpi(
inputs['src_images'], inputs['ref_image'], inputs['ref_pose'],
inputs['src_poses'], inputs['intrinsics'], FLAGS.which_color_pred,
FLAGS.num_mpi_planes, psv_planes, FLAGS.test_outputs)
saver = tf.train.Saver([var for var in tf.model_variables()])
ckpt_dir = os.path.join(FLAGS.model_root, FLAGS.model_name)
ckpt_file = tf.train.latest_checkpoint(ckpt_dir)
sv = tf.train.Supervisor(logdir=ckpt_dir, saver=None)
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
print 'Inferring MPI...'
with sv.managed_session(config=config) as sess:
saver.restore(sess, ckpt_file)
ins, outs = sess.run([inputs, outputs])
# Render output images separately so as not to run out of memory.
tf.reset_default_graph()
renders = {}
if FLAGS.render:
print 'Rendering new views...'
for index, multiple in enumerate(render_list):
m = float(multiple)
print ' offset: %s' % multiple
pose = build_matrix([[1.0, 0.0, 0.0, -m * FLAGS.xoffset],
[0.0, 1.0, 0.0, -m * FLAGS.yoffset],
[0.0, 0.0, 1.0, -m * FLAGS.zoffset],
[0.0, 0.0, 0.0, 1.0]])[tf.newaxis, ...]
image = model.deprocess_image(
model.mpi_render_view(
tf.constant(outs['rgba_layers']), pose, mpi_planes,
tf.constant(ins['intrinsics'])))[0]
unshifted = shift_image(image, m * FLAGS.xshift, m * FLAGS.yshift)
cropped = crop_to_size(unshifted, original_width, original_height)
with tf.Session() as sess:
renders[multiple] = (index, sess.run(cropped))
output_dir = FLAGS.output_dir
if not tf.gfile.IsDirectory(output_dir):
tf.gfile.MakeDirs(output_dir)
print 'Saving results to %s' % output_dir
# Write results to disk.
for name, (index, image) in renders.items():
write_image(output_dir + '/render_%02d_%s.png' % (index, name), image)
if 'intrinsics' in FLAGS.test_outputs:
with open(output_dir + '/intrinsics.txt', 'w') as fh:
write_intrinsics(fh, ins['intrinsics'][0])
if 'src_images' in FLAGS.test_outputs:
for i in range(2):
write_image(output_dir + '/src_image_%d.png' % i,
ins['src_images'][0, :, :, i * 3:(i + 1) * 3] * 255.0)
if 'poses' in FLAGS.test_outputs:
write_pose(output_dir + '/src_pose_%d.txt' % i, ins['src_poses'][0, i])
if 'fgbg' in FLAGS.test_outputs:
write_image(output_dir + '/foreground_color.png', outs['fg_image'][0])
write_image(output_dir + '/background_color.png', outs['bg_image'][0])
if 'blend_weights' in FLAGS.test_outputs:
for i in range(FLAGS.num_mpi_planes):
weight_img = outs['blend_weights'][0, :, :, i] * 255.0
write_image(output_dir + '/foreground_weight_plane_%.3d.png' % i,
weight_img)
if 'psv' in FLAGS.test_outputs:
for j in range(FLAGS.num_psv_planes):
plane_img = (outs['psv'][0, :, :, j * 3:(j + 1) * 3] + 1.) / 2. * 255
write_image(output_dir + '/psv_plane_%.3d.png' % j, plane_img)
if 'rgba_layers' in FLAGS.test_outputs:
for i in range(FLAGS.num_mpi_planes):
alpha_img = outs['rgba_layers'][0, :, :, i, 3] * 255.0
rgb_img = (outs['rgba_layers'][0, :, :, i, :3] + 1.) / 2. * 255
write_image(output_dir + '/mpi_alpha_%.2d.png' % i, alpha_img)
write_image(output_dir + '/mpi_rgb_%.2d.png' % i, rgb_img)
with open(output_dir + '/README', 'w') as fh:
fh.write(
'This directory was generated by mpi_from_images. Command-line:\n\n')
fh.write('%s \\\n' % sys.argv[0])
for arg in sys.argv[1:-1]:
fh.write(' %s \\\n' % arg)
fh.write(' %s\n' % sys.argv[-1])
print 'Done.'
if __name__ == '__main__':
tf.app.run()